现代科学中的九九个难题,他们发现了吉萨大金字塔里隐藏的机要

科学家在吉萨大金字塔里发现了一间新的密室。不过,发现这个秘密的并不是考古学家,而是几位物理学家。

宇宙线是由速度不断增大、带有正电荷和质量颇大的亚原子粒子组成的,在这些粒子当中有百分之九十左右是质子,百分之九是α粒子。剩下的百分之一是更复杂的原子核。已经探测到其中有像铁那样复杂的原子核(铁原子核的质量等于单个质子质量的56倍)。
由于宇宙线粒子的质量这样大,并且又以极其巨大的速度运动,它们就带有极大的能量。事实上,它们是我们所知道的、能量最大的粒子,有些宇宙线粒子的能量比用最最大的加速器所能产生的粒子还要高几十亿倍。
宇宙线粒子在迅猛地撞入地球的大气中时,把它们所碰到的任何原子都击得粉碎,从而产生大量的“次级辐射”,这是由包括介子和正电子在内的各种各样粒子组成的。最后,这种辐射猛烈地撞到地球本身,其中有一部分能穿入地下好多米才被吸收掉;这样的粒子会使它们所碰到的任何原子(包括人体中的各种原子)发生变化。可以想到,这样带来的变化会引起白血球增多症这类疾病。它们还有可能诱发突变。不过,就任何一个特定的个体来说,发生这种情形的机会都是很小的,因为所有碰巧能击中某个特定的人的宇宙线粒子,几乎全都会从他身上穿过去,而不对他造成重大的损害。
宇宙线粒子的确切来源和它们获得巨大能量的办法,都是现在争论不休的问题。
中微子是在产生电子、正电子或μ子的任何一种核反应中,随着其中的一种粒子一起产生的。例如,在太阳上进行的那种核反应产生了大量的正电子,因而也产生了大量的中微子。
中微子是以光速运动的,所以它们甚至比宇宙线粒子跑得更快,不过,它们的能量却低得多,因为中微子完全没有质量和电荷。中微子不会被物质所吸收,除非它们正好击中了某个原子核,但这种情况是极其罕有的,所以,平均地说,中微子能够穿过几万亿公里的固体铅块,然后才被吸收掉。
这样,太阳在每秒内产生的无数万亿个中微子就要朝四面八方射出。那些碰巧朝地球射来的中微子将击中我们,然后就像根本不存在地球一样,若无其事地穿过它径直继续向前飞去,它们同样也穿过我们所有的人。我们在一生中,日日夜夜都不断受到中微子的轰击,但是,由于它们在穿过我们的身体时不会受到吸收,所以它们也不会对我们产生任何影响。
当然,也可能有某个特定的中微子正好在我们附近极其幸运地直接击中了某个原子核。那么,我们就可以探测到中微子。本世纪五十年代,物理学家学会了怎样利用这种非常罕见的事例。现在中微子可以为我们提供恒星内部(也就是产生中微子的地方)的情报,那是我们用任何别的方法所无法得到的。

    新华社伦敦11月2日电(记者
张家伟)埃及胡夫金字塔(又称吉萨大金字塔)以其众多未解之谜一直让考古学家“痴迷”。一个国际研究小组2日说,他们借助粒子物理学探测方法,在这个巨大金字塔内发现了一个用途不明的大型中空结构。

  据新华社报道,2016年7月,我国最新天文大科学装置——“高海拔宇宙线观测站”(LHAASO)项目在四川省稻城县海子山开始基础设施建设,预计5年内建成。

新浦京www81707con 1吉萨金字塔群鸟瞰图。图片来源:HIP
Institute | ScanPyramids mission

  这个由法国、日本和埃及研究人员参加的小组在英国《自然》杂志网络版发表报告说,他们采用宇宙线μ子成像检测技术对胡夫金字塔进行了非侵入式探测。成像分析结果显示,金字塔中存在一个大型中空结构,至少有30米长、数米高,横截面类似金字塔下方的大甬道。

  香港《南华早报》网站8月1日关注了这个世界上海拔最高、规模最大、灵敏度最强的宇宙射线探测装置。报道称,科学家打算修建一个容积超过北京“水立方”两倍的水池,希望捕获来自遥远深空的神秘粒子,借此取得一系列研究成果,比如证明爱因斯坦的宇宙理论有错误。

吉萨大金字塔,或者叫胡夫金字塔,建于公元前2560年左右[1],是埃及第四王朝法老胡夫的陵寝,也是埃及吉萨金字塔群里最古老、最大的一座金字塔。在落成之后的3800多年里,曾经146米高的吉萨大金字塔一直都是地球上最高的人造建筑(这个头衔直到1311年才被英国的林肯大教堂摘走)[2]。然而,几千年过去了,人们一直不知道这座无与伦比的宏伟建筑是如何建造的,也不知道它的内部结构究竟是个什么样子。

  μ子是宇宙射线的副产物,能够穿透石头,且μ子在石头或空气中穿行时,轨迹有明显差别,这让科学家更容易分辨所探测的是中空结构还是实体结构。

新浦京www81707con 2“高海拔宇宙线观测站”设计图

新浦京www81707con 3吉萨大金字塔的内部结构。图片来源:Wikipedia
| 制图:Jeff Dahl

现代科学中的九九个难题,他们发现了吉萨大金字塔里隐藏的机要。  研究人员表示,还不清楚中空结构的确切结构和作用,但这一发现有助他们进一步了解胡夫金字塔及其建造过程。

  挑战宇宙前沿理论 《自然》称中国不再只是“新星”

吉萨大金字塔里有三个已知的房间。一间叫“国王室”,相传是法老胡夫长眠的寝室;一间叫“王后室”;还有一个在地下未完工的房间。狭长的甬道连接着这些房间,南北向竖直分布在金字塔内部。

  报告作者之一、法国遗迹创新保护研究所的迈赫迪·塔尤比说,目前还不清楚这个中空结构是水平的还是倾斜的,以及它是单一结构还是由多个相连结构组成,目前唯一确定的是金字塔内存在这个大型中空结构。

  携带着宇宙起源、天体演化、地球空间环境等科学信息的宇宙线,是来自宇宙空间的高能粒子流。但宇宙线发现100多年来,源头从未被找到。高海拔宇宙线观测站项目的核心目标,就是找到宇宙线起源,向这一“世纪之谜”发起冲击。

新浦京www81707con 4吉萨大金字塔通往国王室的大甬道。图片来源:HIP
Institute | ScanPyramids mission

  胡夫金字塔位于埃及首都开罗西南约10公里的吉萨高地,是埃及现存规模最大的金字塔。此前考证显示,胡夫金字塔建于公元前2509年至公元前2483年。然而对这座金字塔的建造过程,学界还有不少争论。

  LHAASO项目首席科学家曹臻说,“理论上讲,我们的装置应该能找到宇宙线的起源。另外,如此大型的探测装置,还可能有很多意想不到的发现,比如发现高能量的伽玛暴,挑战爱因斯坦的相对论、经典引力理论等基本物理问题。”

科学家们尝试过用各种各样不同的技术来弄清吉萨大金字塔的内部结构,试过微重力探测,试过机器人拍摄,试过地质雷达勘测,然而这么多年过去了,几乎一无所获[3]。

     (来源:新华网 作者:张家伟)

新浦京www81707con 5

这一次,来自法国巴黎遗迹创新保护研究所(HIP
Institute)的迈赫迪·塔尤比(Mehdi
Tayoubi),来自日本名古屋大学的森本久由(Kunihiro
Morishima),和他们的同事们,用μ子成像技术,终于有了些突破[3]。

  预算高达12亿元人民币的“高海拔宇宙线观测站”,只是中国2012-2030年优先规划的16项重大科技基础设施之一。

新浦京www81707con 6新浦京www81707con ,研究团队在用增强现实(AR)技术回看在吉萨大金字塔中探测到的巨大空洞。图片来源:HIP
Institute | ScanPyramids mission

  《南华早报》也注意到,近年来中国的大规模硬件项目进展迅速,世界最大的射电望远镜已在贵州完工,世界首颗量子卫星即将升空,而政府还在考虑更加宏伟的项目,比如世界最大的粒子对撞机以及载人火星探测工程。

μ子(muon,读做“谬子”)常被称为μ介子,这来自历史上的一个误会。受电磁力是光子交换的思想启发,日本理论物理学家汤川秀树提出,核力的产生也是交换某种粒子的结果,并把这种交换粒子称为介子。根据原子核的大小和量子力学中的测不准原理,汤川秀树估计这种新粒子的质量应该是质子重量的五分之一。后来人们果然在宇宙线中找到了质量差不多的粒子,就把这种粒子叫做μ介子。但接着科学家又发现,μ介子跟核力并没有关系,并找到了真正跟核力有关系的π介子。这才发现μ介子并不是介子(由一对正反夸克组成),而是电子的表兄。除了质量比电子重两百倍外,其它基本性质跟电子几乎一模一样。

  中国去年的研发经费投入总量相当于国内生产总值的2%以上,研发投入规模在全球仅次于美国。

除了正好产生一对正反μ子的情况,μ子总是跟μ中微子成对产生。来自太空的原初宇宙射线在地球大气层中会产生大量的粒子,其中就包括μ子。伴随μ子的产生或者衰变,都会有μ中微子产生。反之也是这样。由于中微子本身不能被探测,科学家总是通过探测μ中微子与物质反应产生的μ子,来间接探测μ中微子。

  英国著名科学刊物《自然》每四年评选一次全球科研“新星”,列出那些在科研领域迅速崛起的国家。最新榜单上有印度、波兰和沙特阿拉伯,但中国首次“落选”了。

新浦京www81707con 7法国原子能委员会(CEA)的研究组在大金字塔的正北面架设μ子望远镜。图片来源:HIP
Institute | ScanPyramids mission

  《自然》杂志表示,“中国在高质量研究产出方面的突出增长已经成为常态,所以我们不再将中国视为新星”。

探测μ中微子已经带来了两个诺贝尔奖。一个是发现加速器产生的“中微子”在与物质反应的时候只能产生μ子,不能产生电子——证明加速器产生的“中微子”与伴随电子产生的中微子不是同一种粒子,是另外一种中微子——μ中微子。这个发现获得了1988年的诺贝尔奖。另一个是日本的超级神冈探测器发现μ中微子发生了振荡,获得了2015年的诺贝尔奖。这两次发现中,探测器探测到的其实都是μ子。

  宇宙线:记录宇宙大事件的“陨石”

新浦京www81707con 8名古屋大学的科学家在王后室里铺设μ子乳胶胶片。图片来源:HIP
Institute | ScanPyramids mission

  据新华每日电讯报道,宇宙线又称宇宙射线,是来自宇宙空间的高能粒子流。从成分看,宇宙线粒子的组成中质子约占90%,氦原子核(阿尔法粒子)占9%,其余是重原子核、电子以及少量反物质粒子。这些粒子,基本上以接近光速运动传播。

宇宙线产生的μ子非常多,来自各个方向。在地表上,每平方米每秒能有200个(由于地磁场的影响,不同的地方略有不同)。这些μ子对中微子探测实验会造成严重的影响。不过μ子穿过物质的时候会被吸收,被吸收的程度主要取决于穿过物质的材料、密度及穿过的路径长度,所以中微子实验总是在很深的地下,利用岩石来吸收μ子。在100米深的地下,μ子数会从地表的每平方米每秒200个减少到1个;到地下700米会减少到0.002个。位于四川雅砻江锦屏的中国锦屏地下实验室是现在世界上岩石覆盖最深的实验室,在2400米深的地下。在那里,每平方米每秒钟只能找到百万分之几个μ子。

  “天文学的传统研究对象大多是电磁波,但是宇宙线,却是人类目前能够从宇宙深处获得的唯一物质样本。”高海拔宇宙线观测站项目首席科学家、中科院高能物理研究所研究员曹臻说。他解释说,光以及其他电磁波,是一系列天体事件发生时相伴而生的“信号”,人类研究这些“信号”,进而对物质的性质展开推断。而宇宙线,是组成物质本身的粒子直接传播到地球。这就好比用望远镜观测月球、和去到月球表面取回样品来研究的区别,宇宙线中包含着许多电磁波无法传递的信息,也正因此,科学家将其形象地称为“宇宙陨石”,视之为传递“宇宙大事件”的“信使”。

新浦京www81707con 9日本高能加速器研究机构的团队在王后室里架设μ子闪烁计数器。图片来源:HIP
Institute | ScanPyramids mission

  自20世纪初以来,人类对宇宙线的探索从未中断。1912年,奥地利物理学家赫斯(Hess)乘坐热气球在空气电离实验中首次发现了宇宙线。此后100多年间,各国科学家又多次在热气球、地表、甚至卫星上安装探测器,试图进一步揭示宇宙线的奥秘。

由于科学家已经把μ子与物质的作用研究得非常清楚了,所以可以很准确地通过计算机模拟μ子穿过不同物体时被吸收的程度。以前有个法国中微子实验模拟了它的地下实验室应该看到的μ子数,结果发现模拟数值跟实际观测测到的不一致。后来通过地质调查找到了问题所在,原来是实验室头顶上的山体有一部分密度异常,影响了μ子穿过山体时被吸收的程度。

  “但是相对电磁波来说,宇宙线的研究更加困难。宇宙线是带电粒子,碰到宇宙中无处不在的磁场就会发生偏转,这给寻找其起源的科研工作带来很大难度。”高海拔宇宙线观测站项目科学组成员、南京大学天文与空间科学学院教授王祥玉举例说,比如光是直线传播的,所以我们观测到太阳光就能知道太阳所在的方向。但是宇宙线可能在电场、磁场中发生了很多次方向偏转,无法推测来源方位。此外,宇宙线进入大气层以后还会与其中原子核碰撞、被大量吸收,因此大部分原初宇宙线在地球表面已经无法观察了。

这次在吉萨大金字塔里发现密室就是这个原理——如果金字塔里有密室,也就是一个中空的空间,那么μ子在穿过整个金字塔的时候,这一部分吸收的μ子就会比其他地方少。

  为了克服这些困难,科学家不断进行尝试。50年代以前,科学家多利用“云雾室”——一种充满饱和蒸汽的设备——结合照相机来成像宇宙线粒子经过形成的径迹。这种方法只能研究宇宙线粒子在空气中相互作用后产生的次级粒子。为了能够研究原初宇宙线自身以及相关的天文学问题,人们又发明了间接探测方法,通过在地表布设探测器阵列,全面捕捉宇宙线与大气作用后到达地面的次级粒子,以此反推宇宙线本身的性质。

换句话说,因为在各个方向上都有宇宙线产生的μ子,所以可以在金字塔的不同的地点探测来自不同方向的μ子。如果在某方向探测到了比预期数量多的μ子,那很可能就说明,在这个方向上的金字塔内存在一个中空的密室。

  “从1956年建立云南落雪山宇宙线站起,我国也一直积极推进宇宙线研究。现在,位于我国西藏羊八井的国际宇宙线观测站已成为重要的宇宙线观测窗口,去年发射升空的暗物质卫星‘悟空’,也载有极高能量分辨率的高能宇宙线粒子的探测装置,随着科技发展,人类对宇宙线的探索也会不断前进。”王祥玉说。

新浦京www81707con 10研究团队在大金字塔中设置的三套μ子探测器的位置,以及它们观测μ子来源的方向。图片来源:参考文献[3]
| 翻译:小米

  拓展人类对物理规律的认识

塔尤比和同事们这次就使用了三种不同的μ子检测技术,在吉萨大金字塔内部新发现了一个大型的中空结构。他们估计这间密室至少有30米长,在大甬道的上方,有和大甬道类似的三角形横截面。可惜的是,μ子成像技术只能发现那里(应该)有这么一间密室,并不能告诉科学家这间密室的详细结构和作用。不过,这也是吉萨大金字塔里的大发现了。或许,在不久的将来,就有更新的技术能够一窥密室的真容,帮助科学家高清吉萨大金字塔的内部构造,揭开尘封了几千年的金字塔建造之谜。

  携带着宇宙起源、天体演化、地球空间环境等科学信息的宇宙线,是一种“不请自来”的宝贵科学资源。对茫茫宇宙中这些接近光速运动的高能粒子,人类迄今取得了哪些研究进展?又还有哪些未解之谜?

新浦京www81707con 11新浦京www81707con 12在吉萨大金字塔里找到的密室位置示意图。研究团队猜测,这个密室也许是像第一幅图那样横在大甬道上方,也许是像第二幅图那样和大甬道平行。图片来源:HIP
Institute | ScanPyramids mission

  高海拔宇宙线观测站项目科学组成员、中科院紫金山天文台研究员袁强说,进入20世纪以来,现代物理学研究最重要的方向之一,就是对微观粒子的认识。科学家们意识到,宏观物体在低速运动时会受到外界各种干扰,要掌握更为基本的物理规律,只有转入微观世界,在高能基本粒子间展开探究。而在50年代大型人造粒子加速器制造出来以前,宇宙线粒子是人类仅有的几个高能粒子来源之一,粒子物理的研究也主要由宇宙线驱动。

当然,μ子成像还有很多其他的应用。比如福岛核电站损毁的反应堆,人不能呆在那里,假如放一个μ子探测器在里面或附近,就可以大致看见里面的情况,监视反应堆的变化。再比如,在小一点的火山旁边放上μ子探测器,可以监视内部岩浆的活动情况,预报火山爆发。

  产生于宇宙深处的高能粒子,经过宇宙尺度的“巨型天然加速器”,给人类送来打开微观世界的钥匙。一批基本粒子也正是在宇宙线研究中发现。1932年,美国物理学家安德森在云雾室记录的宇宙线径迹中首次发现带正电荷的电子,这是人类发现的第一个反粒子,由此揭开了一个全新的镜像世界。此后,缪子、K介子、π介子等,也相继在宇宙线研究中被人类探知。

想用μ子成像技术来找宝贝当然也可以。不过前提是,你得能把探测器放到宝贝下面去。

  “现在世界上最大、能量最高的粒子加速器——欧洲大型强子对撞机,可将粒子加速到的最高能量大约是14万亿电子伏特,而人类已经发现的宇宙线粒子所能达到的最高能量,是这一能量的1000万倍以上。人类研制加速器,每突破一个能量级别,技术难度和成本会指数级增加,从这个角度说,加速器推动的高能物理研究很可能进入瓶颈期,回过头来借助宇宙线研究极高能粒子,可能会再次大幅拓展人类对物理规律的认识,获得超越加速器的突破性成就。”袁强说。

哦对了,还需要几位高能物理学家。(编辑:阿娇)

  随着观测技术的发展,仅借助宇宙线来研究高能粒子,已经远不能满足人类的求知欲。这些宇宙深处的物质样本究竟来自何处、其中蕴含怎样的天体信息,越来越成为科学家研究的热点。

参考文献:

  1. Wikipedia, Great Pyramid of Giza. Last visited on November 2, 2017. 
  2. Wikipedia, List of tallest buildings and structures. Last visited on
    November 2, 2017. 
  3. Morishima, K. et al. Discovery of a big void in Khufu’s Pyramid by
    observation of cosmic-ray muons. Nature
    dx.doi.org/10.1038/nature24647 (2017).

  “很遗憾,迄今为止人类对宇宙线的来源还知之甚少。”王祥玉说,科学家已经发现,超新星遗迹、脉冲星风星云、银河系中心的超大质量黑洞等等,都具有产生宇宙线的条件。但这些候选天体中究竟哪一个,亦或是其他人类还未发现的天体,是这些大量弥漫、无处不在的宇宙线主要来源,现在还不得而知。

  2002年,美国国家研究理事会将宇宙线起源列入新世纪宇宙物理领域的11个“世纪之谜”。围绕宇宙线在哪里产生、如何产生、怎样传播这三个核心难点,物理学家至今还在不断探寻。

  中国“拉锁”创三大世界之最

  高海拔宇宙线观测站项目,英文缩写名LHAASO(音译“拉锁”),这道在海拔4400米以上拉起的恢恢天网,将成为全球覆盖能量范围最大的宇宙线探测设备,随时等待捕捉掉落地球的新秘密。

  曹臻向记者介绍,LHAASO观测站总占地面积约2000亩,站区包括探测器阵列及综合科技中心等附属建筑。LHAASO探测阵列由3个部分组成。首先是一个深5米、占地8万平方米的水池,这个完全密封、一片漆黑、面积有两个半北京水立方大小的水池,布满3000个左右的测量单元,能够收集到非常遥远的星体,比如3亿光年外黑洞爆发时产生的伽马光子,它专门用来探测能量较低的宇宙线;第二部分是一个约一平方公里的复合地面阵列,约5200个闪烁体探测器按边长15米的正三角形点阵来排布,同时在2.5米的地下每隔30米布设约1200个缪子探测器,用于探测能量稍高的宇宙线;第三类装置由12个望远镜系统组成,用于宇宙线能谱高精度测量。这三类探测器彼此联动,组成巨大的复合探测装置。

  “LHAASO项目集合了三个世界之最。”曹臻说,一是在1万亿电子伏特附近的甚高能伽马射线巡天探测方面,灵敏度世界第一;二是100万亿电子伏特附近的高能段伽马射线探测方面,灵敏度世界第一;三是三类探测器复合,覆盖的宇宙线能量测量范围世界最广。

  宇宙线发现100多年来,源头从未被找到。高海拔宇宙线观测站项目的核心目标,就是找到宇宙线起源,向这一“世纪之谜”发起冲击。“理论上讲,我们的装置应该能找到宇宙线的起源。另外,如此大型的探测装置,还可能有很多意想不到的发现,比如发现高能量的伽玛暴,挑战爱因斯坦的相对论、经典引力理论等基本物理问题。”曹臻说。

  “高海拔宇宙线观测站项目有助于科学家分层次、分类别地精确测定宇宙线能谱。基于整个装置在伽马射线探测方面的卓越性能,我们期待将发现1000个以上高能伽马射线源,而目前这一数字是100个。”袁强说。

  “LHAASO项目将与世界其他3个同水平宇宙线观测站(位于阿根廷的极高能宇宙线观测站、位于南极的中微子天文观测站、待建的切伦科夫望远镜阵列)形成优势互补,向宇宙线起源这一世纪之谜发起冲击,推动粒子物理学、天文学、宇宙学领域的相关科学研究取得突破性发展。”曹臻说。

  (观察者网综合参考消息、新华每日电讯、中科院高能物理所报道)

相关文章