最有概略范儿的十大万圣节装扮,希格斯粒子

(Ent/译)万圣节舞会就要开始,而你现在还没选好自己的造型,这时该怎么办?如果你想找一套有点搞笑、有点“掉书袋”而且还能打动物理学家的装扮,请尽管看下去。本文将为你介绍10种让僵尸爱因斯坦看了都赞不绝口的万圣节造型。

第四章:“量子”物理学的探索史,它的恢宏值得敬畏!

原标题:捕捉“上帝”的秘密,科学家成功观测到希格斯玻色子的最常见衰变

编者按:瑞典皇家科学院于2013年10月8日北京时间18:45分,授予弗朗索瓦·恩格勒(François
Englert)和彼得·希格斯(Peter W.
Higgs)诺贝尔物理学奖,获奖原因是他们预测了希格斯机制。

1.暗能量

这套装扮需要你动起来,对于那些计划在派对上摄入大量糖分的人来说再合适不过。你只需穿上一套纯黑的衣服,然后整晚上都挤在两个人中间把他们推开即可。

恭喜!现在你成了暗能量:一种神秘的力量,导致整个宇宙加速扩张,让实验室为之着迷,让全场的舞伴都困惑不已。(相关阅读:上天入地,看暗能量往哪里躲!)

新浦京www81707con 1

上一章我们系统的了解了“宏观”物理学的发展史,从经典物理到相对论的发展,期间有多少个人的名字,就有多少个精彩的故事,在这些精彩故事的背后,是一个个孤独的灵魂在奋斗。

欧洲核子研究中心(CERN)28日宣布,在发现“上帝粒子”——希格斯玻色子6年后,研究人员终于观测到它衰变为一对底夸克。这一“常见衰变”的捕获被研究人员看作是探索希格斯玻色子的里程碑。

新浦京www81707con 2

2.宇宙暴胀

物理学理论说,在大爆炸发生后的几分之一秒里,宇宙呈指数膨胀,让微小的涨落变成了整个宇宙间所有星系的种子。

新浦京www81707con ,但是要穿这么一身装扮进门的话,就只能祝你好运了。

所以作为替代,不如就穿一套简单的黄色救生衣,在上面画出宇宙来:恒星、行星、小行星,爱画点啥就画点啥。等到别人拽动紧急拉绳的时候,宇宙就膨胀啦。(相关阅读:证实暴胀,顺手终结宇宙学?)

新浦京www81707con 3

量子力学是在“宏观”物理学基础上拓展出的一门新科学。现在已经深入到我们生活的方方面面。走近这个世界,你又将看到一个个匪夷所思的奇迹。

希格斯玻色子的产生的条件非常苛刻,需要在大型强子对撞机进行约10亿次碰撞,才能观测,而且它的寿命极为短暂,假设希子质量为126
GeV,则标准模型预测平均寿命大约为1.6×10−22
秒。由于不可能直接看到希格斯玻色子,科学家们使用这些次级粒子衰变产物来研究它的特性。自从2012年发现希格斯玻色子以来,在其衰变物中,科学家们按照现有理论只能识别出约30%。美国能源部布鲁克海文国家实验室ATLAS物理学家卡瓦莉尔(Viviana
Cavaliere)表示,过去几年,由于希格斯玻色子的衰变速度非常快,抓住它一直是人们的首要任务。

新浦京www81707con 4

3.海森堡不确定性原理

这是回收利用你去年绝命毒师套装的一个完美借口。

沃尔特·老白——在剧中使用化名“海森堡”——虽说是个化学教师,但海森堡不确定性原理归物理管。这个原理得名于德国物理学家海森堡,他说,你对一个粒子的位置知道得越准确,你对它的动量就知道得越不准确。所以穿上老白的帽子和墨镜(或者黄色安全服和呼吸器),但是再加上点儿不确定性——把谜语人风格的问号贴满你的衣服吧。

新浦京www81707con 5

马克斯·普朗克

根据粒子物理学标准模型预测,约60%的希格斯玻色子都会衰变成一对底夸克,也就是6种夸克中第二重的夸克(第一为顶夸克)。新的观测结果支持了标准模型对这一“常见衰变”的预测。研究人员说,如果观测结果与标准模型的预测不符,则会动摇标准模型的基础并指出新的物理学方向(还有其他粒子有待发现?)。

2013年诺贝尔物理学奖,颁给了弗朗索瓦·恩格勒(上)和彼得·希格斯(下),以表彰他们在发展赋予基本粒子以质量的希格斯机制方面所做的贡献。图片来源:news.com.au

4.坏中微子

警告先说在前头:只有超级无敌外向的人才适合尝试这套装扮。

中微子是幽灵般的粒子,会穿过几乎所有物质而不被探测到。事实上,每秒钟都有数万亿计的中微子穿过你的身体,而你对此一无所知。

但是你可不会像那些老派中微子一样出场。那可不成。你是个坏掉的中微子——也许是全宇宙最坏的一个,所以你会撞上一切东西:灯柱啊,行道树啊,闹鬼房子啊,当然还有人类。只需披上一张白床单,然后整晚上不断和每个人、每样东西发生相互作用即可。(相关阅读:中微子,开启通向新物理学的大门)

新浦京www81707con 6

1900年普朗克在黑体辐射研究中的能量量子化假说是量子理论建立的前奏。尽管在最初的思考中普朗克并不赞同玻尔兹曼的统计理论,但由于他发现无法通过经典的热力学定律来导出辐射定律,他不得不转而尝试统计规律,其结果就是普朗克黑体辐射定律。

新浦京www81707con 7

如果把物质分割得越来越小,会发生什么?

5.你最爱的物理实验项目

你们这帮物理嗑多了的家伙肯定知道很多名字奇怪的物理实验项目,这些名字都是上好的万圣节素材。所以你可以扮成ATLAS(大型强子对撞机所进行的实验,也是希腊神话人物阿特拉斯),DarkSide(格兰萨索国家实验室的暗物质实验,也是你去年达斯·维达套装的新用法),PICASSO(加拿大萨德伯里中微子观测实验室的暗物质项目,也是立体主义的创始人毕加索),MINERvA(费米实验室的中微子项目,也是罗马智慧女神),或者Dark
Energy
Survey(智利布兰科望远镜的暗能量摄像机,也是讲冷笑话双关的好机会)。

热爱物理的家长们可以装扮成美国探险家丹尼尔·布恩(Daniel
Boone),而孩子们可以扮成中微子实验项目MicroBooNE和MiniBooNE。小孩既可以戴上他们自己的迷你毛皮帽子,也可以装扮成探测器水箱——里面当然是用来塞糖果的啦。

新浦京www81707con 8

同时普朗克还计算得到了公式中的普适常数,即普朗克常数。然而即使如此,普朗克的能量量子化假说最初也未得到应有的重视,在当时的物理学界看来,将能量与频率联系起来(即E=hv{\displaystyle
\epsilon =h\nu \,}E
)是一件很不可理解的事,连普朗克本人对量子化也深感怀疑,他仍然试图寻找用经典手段解决问题的办法。

图1
希格斯玻色子衰变为两个底夸克(蓝圈),伴有一个W玻色子衰变为一个μ子(红线)和一个中微子(白线)的ATLAS候选事件

最终,你会得到构成物质的分子或者原子。但这些东西还能进一步分解成电子和原子核。而原子核又可以继续被分割成构成它们的质子和中子。它们的内部则是夸克。

最有概略范儿的十大万圣节装扮,希格斯粒子。6.费曼图

你可能知道,费曼图是一套用直线曲线表示粒子相互作用的图示。但有没有注意到,它们看起来有那么点儿像人?如果你玩腻了黑底白骷髅的老套装扮,试试这个吧。扮演企鹅图可得奖励分!(相关阅读:《生活大爆炸》中的费曼图)

新浦京www81707con 9

1905年,爱因斯坦在他的革命性论文《关于光的产生和转变的一个启发试探性的观点》中秉承了普朗克的能量量子化假说,提出了光量子的概念。在爱因斯坦看来,将光看作是一份份不连续的能量子将有助于理解一些电磁理论无法理解的现象:

来源:ATLAS/CERN

到了这一步,你就已经抵达了标准模型(我们当前的粒子物理学理论)之中,我们视为是基本的那一层面。不管你一开始分割的是什么物质,到了这个地步,你都会得到一大堆夸克和一大堆电子之类的粒子。

7.反物质

翻出你的喇叭裤和标语牌,用大粗字写上你中意的措辞:“我恨东西!”、“物质糟透了!”或是“打倒夸克!”,这样就够啦。挨家挨户抗议,骄傲地宣称你就是反物质。这抗议很公正:物理学家还是不能确定为什么物质比反物质多,明明大爆炸的时候应该创造出等量的物质和反物质才对。

幸运的是,在追寻糖果的征途上你并不需要解答这个难题。只是记得不要和别人击掌,你俩可能会湮灭掉。(相关阅读:CERN首次产生出反物质束流)

新浦京www81707con 10

在我看来,如果假定光的能量在空间的分布是不连续的,就可以更好地理解黑体辐射、光致发光、紫外线产生阴极射线,以及其他有关光的产生和转变的现象的各种观测结果……这些能量子在运动中不再分散,只能整个地被吸收或产生。— 阿尔伯特·爱因斯坦

40多年前,科学家们建立起一套名叫“标准模型”的粒子物理学理论,但这一理论一直缺少最后一块拼图,即希格斯玻色子。这一难以寻觅又极为重要的“上帝粒子”被认为是解释其他粒子如何获取质量的关键。2012年7月,欧洲核子研究中心大型强子对撞机(LHC)研究人员宣布发现希格斯玻色子,这是LHC最为显赫的成绩。

夸克事实上还可以分成6种:构成质子和中子的是较轻的上夸克和下夸克,另外还有较重的奇夸克、粲夸克、底夸克和顶夸克。电子则属于另外6种粒子构成的另一个家族,即轻子:包括电子的两种质量更重的“表亲”——μ子和τ子,以及与它们一一对应的3种几乎没有质量的中微子。所有这12种物质粒子,被统称为“费米子”,都各自拥有一种与它们完全相同、只是电荷相反的反物质粒子。就是这样了。物质不可能再分割到比这些基本粒子更小了。

8.缠结粒子

爱因斯坦说,量子缠结就像是“远程闹鬼作用”——这简直就是万圣节服装的完美题材呀。量子缠结的粒子超级奇怪。测量其中一个就会决定另外一个的状态,瞬时完成。

找一个和你超级合拍的小伙伴,穿上相反的颜色,比如黑和白。在没人观测你们的时候,可以尽情放松;但和人发生相互作用的时候,记得一定要协调一致。人家朝左旋,你就朝右。人家右手挥手?你就左手。就这样下去。

当然你也可以简单地把你俩用一张网给缠起来。没人说量子缠结一定要那么难嘛。(相关阅读:时间之箭源于量子纠缠?)

新浦京www81707con 11

如前所述,这里提到的阴极射线正是光电效应所产生的电流。爱因斯坦进一步将光量子概念应用到光电效应的解释中,并提出了描述入射光量子能量与逸出电子能量之间关系的爱因斯坦光电方程。虽然这一理论在1905年就已提出,真正通过实验验证则是美国物理学家罗伯特·密立根在1916年才完成的。

新浦京www81707con 12

如此简洁的基本粒子组合,与实验事实完美吻合,但其中隐藏着一个令人费解的难题。所有这些物质粒子都有一个属性,被称为“质量”——这是一种抗拒被移来移去的属性。不同粒子的质量各不相同,从质量最轻的电子中微子到质量最重的顶夸克,跨越超过11个数量级之多。这些质量来自何方,为什么又如此千差万别呢?

9.全息的你

有个理论说,宇宙可能是个全息图——这理论目前正在接受费米实验室全息尺实验的检测。如果真是这样的话,时空的全部信息其实可以塞进一坨二维的点,只不过它在我们看起来是三维的投影而已。

帮助别人想象这一奇怪的概念吧!只需要打印一张你自己的照片,贴在额头上就好。技术上讲你还是3D的,但你脸上的二维照片还是会引发一些有趣的讨论。也许如果你行程很忙,或者不希望吃个零食都要和人讨论时空本质的话,还是不要这样了吧。

新浦京www81707con 13

密立根的光电效应实验测量了爱因斯坦所预言的遏制电压和频率的关系,其曲线斜率正是普朗克在1900年计算得到的普朗克常数,从而“第一次判决性地证明了”爱因斯坦光量子理论的正确。不过,密立根最初的实验动机恰恰相反,其本人和当时大多数人一样,对量子理论持相当大的保守态度。

图2
希格斯玻色子衰变为两个底夸克(蓝),伴有一个Z玻色子衰变为一对正负电子(红)的CMS候选事件。

破缺的对称

在标准模型之中,构成物质的费米子通过作用力发生相互作用,而作用力是由另一大类被称为“玻色子”的粒子传递的。以电磁力为例,是它使得原子能够形成,驱动电流在我们的电器中奔腾,而传递电磁力的玻色子则是光子。光子与物质的相互作用取决于电荷的多寡:电子(携带1个负电荷)感受到的电磁力,就要强于夸克(携带-⅓或者+⅔个电荷)。不带电荷的中微子,根本感受不到电磁力。

夸克还拥有各自的“色荷”,被称为胶子的粒子依据色荷产生强核力。这种力要比电磁力强得多,但奇怪的是,胶子本身也携带色荷,因而会彼此粘黏在一起。于是,我们从未见到过夸克和胶子以游离态的形式自由自在地漫游,只能在质子和中子之类的粒子内部才能看到它们——强核力的作用范围也不会超出亚原子尺度的范畴。

至于标准模型中的第三种作用力,弱核力的强度相当弱,但如果没有它,驱动太阳和其他恒星的放射性衰变就不会发生。这种力之所以微弱,大约是因为携带这种力的粒子——W玻色子和Z玻色子——质量几乎是质子的100倍。创造出这样的粒子需要大量能量。在通常条件下,如果可以的话,物质粒子更愿意交换没有质量的光子来发生相互作用。

在极高的能量下,比如在宇宙诞生的最初一瞬间,或者粒子加速器的对撞当中,这些差异就消失了。电磁力和弱核力,在日常生活中相差如此之巨的两种作用力,变成了统一的“弱电力”。

弱电力分裂成电磁力和弱核力的过程,被称为弱电对称破缺,必定发生在宇宙早期的某一时刻。不管是什么导致了这一过程的发生,它与质量之谜都有着明显的关联。毕竟,通过这一机制,W玻色子和Z玻色子获得了质量。希格斯玻色子最初就是提出来解释这个对称为什么会破缺的。

10.你最爱的粒子

有很多方式可以装扮成一种基本粒子。要糖的时候带上一盏灯就变成了光子——光的携带者;半道给人发饼干就变成了希格斯玻色子——质量的赋予者。整晚上都不停把东西往别人身上粘,就变成了胶子。(相关阅读:希格斯粒子,赋予其他所有粒子以质量)

你还可以脱离粒子物理标准模型的范畴,去当一个超对称粒子(supersymmetric
particle),或者说“sparticle”。穿一件角斗士服装,每当有人问起就大喊一声:“我是Sparticle!”

要不还可以抓一个小伙伴扮演介子——夸克和反夸克组成的粒子。介子一般不怎么稳定,所以每当你们松开手的时候,记得一定要衰变成一大堆电子和中微子——或者至少来点玉米糖意思一下。(编辑:窗敲雨)

新浦京www81707con 14

(图片作者:Sandbox Studio, Chicago with Corinne Mucha)

1906年,爱因斯坦将普朗克定律应用于固体中的原子振动模型,他假设所有原子都以同一频率振动,并且每个原子有三个自由度,从而可求和得到所有原子振动的内能。将这个总能量对温度求导数就可得到固体热容的表达式,这一固体热容模型从而被称作爱因斯坦模型。这些内容发表于1907年的论文《普朗克的辐射理论和比热容理论》中。

来源:CMS/CERN

概念的诞生

对称破缺并不仅限于奇异的作用力。日常生活中我们都会遇到一个例子,那就是液体冷却后变成固体。对于液体来说,从所有方向上看过去,它都是一样的。而对于固体来说,沿着不同的轴向看过去,它的样子会有明显的区别。在这个过程中,前面这种广义上的对称状态被后面这种不太对称的状态取代了。

上世纪60年代,粒子理论学家开始研究,能不能发展出一些工具来描述这种对称破缺,以便应用于不断冷却的宇宙。这绝非易事。固体或液体之中分子的相互作用,可以通过一套固定的参照坐标系来定义,然而由于爱因斯坦的广义相对论,在宇宙之中你找不到这样一个标准的参照系。

1964年,比利时理论学家罗伯特·布绕特(Robert
Brout)和弗朗索瓦·恩格勒(François
Englert)提出了量子场方程,这种场能够弥漫于整个宇宙,在符合相对论的前提下产生弱电对称破缺。英国物理学家彼得·希格斯(Peter
Higgs)提出了同样的方程,并且指出这个场中的涟漪会表现为一种新的粒子。同年稍晚些时候,杰拉德·古拉尼(Gerald
Guralnik)、卡尔·哈庚(Carl Hagen)和汤姆·基博尔(Tom
Kibble)将这些概念整合成了一种更为现实的理论——这就是标准模型的前身。

新浦京www81707con 15共有6位科学家在希格斯机制的发展过程中做出过贡献,从左到右分别是:弗朗索瓦·恩格勒、卡尔·哈庚、杰拉德·古拉尼、彼得·希格斯、汤姆·基博尔和罗伯特·布绕特(已故)。图片来源:《新科学家》

后来被称为希格斯场的这个东西,它的中心思想就在于:即使处于最低能的状态,空间也绝非空无一物。在空间中穿行的粒子或多或少会与这个场发生作用,这种作用使粒子在运动时产生了一种“粘黏”的特性,也就是质量。W玻色子和Z玻色子通过与这个场的某种相互作用获得了它们的质量,费米子则通过另外一种相互作用获得了质量。由于希格斯场不携带净的电荷或者色荷,光子和胶子根本不与它发生作用,因此仍然没有质量。

这是个漂亮的花招。为了找出还有没有更多的东西,我们需要曝光希格斯场,方法就是让它产生涟漪,而那些涟漪会被我们看成为希格斯玻色子。理论和实验的发展让我们对所需的能量有了一个很好的估计:希格斯玻色子的质量必定介于大约100
GeV到400 GeV之间。我们需要找一个相当巨大的机器才行。

尼尔斯·玻尔

研究人员介绍,希格斯玻色子有多个衰变道,此次观测到其常见的衰变道(衰变为底夸克)绝非易事,主要困难在于质子和质子的碰撞中存在许多产生底夸克的途径,因此很难将希格斯玻色子衰变信号与噪声干扰隔离开。相比而言,当年发现希格斯玻色子时观察到它不太常见的衰变道(衰变为一对光子)则更容易从背景中提取。

新粒子现身

希格斯玻色子是短命的粒子,几乎会在一瞬间就衰变成其他粒子。为了推断出它的存在,我们必须测量这些衰变产物,寻找它们是从一个希格斯粒子衰变而来的证据。

幸运的是,标准模型预言出了我们需要知道的、有关希格斯玻色子的一切——除了它确切的质量。对于每一个可能的质量,我们能够预言大型强子对撞机(LHC)中能够产生的希格斯粒子的数量,并且预言它们会衰变成什么。

例如,希格斯粒子有时应该会衰变成一对高能光子。由于粒子衰变时动量守恒,这两个光子的动量就可以换算为产生这两个光子的粒子的质量。许多现象都会产生一对光子,但如果我们专注于那些看上去像是希格斯玻色子产生的光子,然后把它们的动量绘制在一张图表上的话,在对应于特定质量的动量数值上就会出现一个“鼓包”——某种未知的粒子就会以这样的形式显现出来。ATLAS和CMS都在质量相当于大约125
GeV的位置上看到了这样的鼓包。2012年7月4日,他们向全世界宣布了这一结果。

新浦京www81707con 16观测到的这个“鼓包”表明,在质量大约为125
GeV的地方,存在一种新的粒子。图片来源:《新科学家》

这并不是唯一的证据。希格斯玻色子还应该会衰变成两个Z玻色子,然后再进一步衰变成两个轻子。把这些轻子的动量加在一起,在光子数据中相当于同样质量的位置上,也产生出了一个峰值。W玻色子也提供了它们的证据。这些粒子衰变成为中微子,后者还没有被检测到,因此在这个实验中还没有出现明确的质量鼓包。相反,我们只看到了更多的W玻色子衰变,数量比希格斯玻色子不存在的情况要多。

总而言之,这些证据刚好足够达到宣称发现的“5σ”黄金标准,表明这一发现大概只有1/3500000的可能性是随机统计噪声所造成的假象。在那之后,对于那里真的存在一个粒子,我们的确定性还在进一步增长。不过,我们还必须进行更多的实验,才能确定它是不是我们所认为的希格斯玻色子。

ATLAS和CMS

当两个质子在大型强子对撞机的ATLAS和CMS探测器的核心对撞时,它们会分解成构成质子的夸克和胶子,进而衰变成朝各个方向四散奔逃的大量粒子。这些探测器的任务就是测量或者分辨这些碰撞产物。

每个探测器都由一系列同心环构成。距离碰撞点最近的同心环由半导体构成。如果带电粒子穿透这层半导体,被松散约束在这种材料的原子之中的电子就会被释放出来,形成特定的电流,让科学家能够精确测量这些粒子的穿行路线。探测器周边的磁场会弯曲这些带电粒子的路线,弯曲的程度表明了这些粒子的动量。

再向外一个同心环,则由填充着液态氩(ATLAS)或者钨酸铅晶体(CMS)的探测器构成。与这些探测器中密集排列的原子发生的碰撞,会让大多数粒子停滞在其中,这些粒子减速时发出的光子可以用来测量那些粒子的能量,从而鉴别它们的身份。

电子较重的“表亲”,也就是μ子,不会在这些探测器中止步,但更外一层同心环中的专用探测器会鉴别和测量它们。对于更难以捉摸的中微子,则完全没有进行测量。它们的存在是通过统计碰撞中产生的所有其他粒子的动量而推断出来的。

每次都有许多质子-质子同时发生碰撞,这些碰撞产生的粒子接近光速向外飞出,而需要仔细研究的碰撞必须尽快筛选出来,因为不到50纳秒之后,又会有另外两束质子在探测器的核心发生对撞。大型强子对撞机目前正在升级,升级完成之后,这个时间会缩短到25纳秒。如此大量的数据,会传送到世界各地被连接在一起的计算机中,经由大量计算来鉴别希格斯玻色子是否存在。

新浦京www81707con 17大型强子对撞机中发生的每一次质子-质子对撞,都会产生大量接近光速向外飞散的粒子。正是从这些乱麻中找出的线索,帮助CERN的物理学家发现了新的粒子。图片来源:《新科学家》

大型强子对撞机

爱因斯坦提出的最著名的一个方程,E =
mc2,将能量和质量联系在了一起。后果之一便是,当大质量粒子高速对撞在一起时,释放出来的能量能够用来创造出其他的大质量粒子。瑞士日内瓦附近CERN的大型强子对撞机,已经花了两年时间,将能量高达4
TeV的质子对撞在一起。将携带这么多额外能量的两个质子对撞在一起,理论上,你能够创造出8000多个质子。

LHC位于一条27千米长的隧道之内。通常,它被描述为一个环,但实际上,它更像是一个边角有些圆的八边形。在直线段,强大的电磁场给两束相对运行的质子束注入能量,每次经过都会给它们加速。等到对撞时,它们的速度已经达到了光速的99.999999991%。

要弄弯如此高速运动的粒子束,你需要非常强大的磁铁。电阻带来的任何能量损失,都会成为运行时的短板,因此磁铁必须由超冷的超导材料制成。即使如此,它们也只能把粒子束弄弯一点点——这就是LHC被建造得如此巨大的原因所在。

在八边形的4个边上,更多磁铁将质子束约束到还不到人头发丝粗细,然后让它们迎头相撞。4个大型探测器:ATLAS、CMS、LHCb和ALICE,会在各个碰撞点上记录碰撞结果。ATLAS和CMS是全功能探测器,设计用来测量到底撞出了什么东西——包括搜寻转瞬即逝的希格斯玻色子。

新浦京www81707con 18大型强子对撞机,位于日内瓦附近一条长达7千米的地下隧道之中。正是在那里进行的质子对撞实验,可能发现了传说中的希格斯粒子。图片来源:startswithabang.com

尚未回答的问题

标准模型是一个巨大的成功。然而,就算有了希格斯玻色子为它加冕,它也仍然是不完整的。引力在标准模型中明显缺席,而且它也无法解释暗物质——这种东西只能通过它的引力作用在天文观测中被察觉到。接下来还有一个谜题:为什么物质会比反物质多这么多,因为标准模型预言,它们的数量应该差不多是相等的。

粒子物理学的下一步,必须要解释这些谜题。比如,我们有可能在大型强子对撞机的质子碰撞中产生出暗物质粒子,或者在深埋于矿井和坑道之中的几个实验装置中避开宇宙线的干扰而搜寻暗物质粒子的踪迹。另一种途径是,我们或许可以观察空间中两个暗物质粒子湮灭而产生的高能粒子来间接地观察暗物质,比如正在国际空间站上展开实验的阿尔法磁谱仪(AMS)。

至于反物质,CERN的实验或许可以制造并且存贮它们,我们甚至在正电子发射断层扫描仪(PET)中利用它们来帮助医生诊断癌症。LHCb实验装置会检测质子-质子碰撞中产生的短命粒子的衰变,寻找反物质粒子何以如此稀少的证据。

中微子也可能会提供一些帮助。这些幽灵一般的粒子在空间中穿行时,会在3种中微子之间相互变换。在中国和韩国之间测量不同中微子混合程度的实验暗示,正反物质的失衡可能也存在于中微子当中。自然界中观察到的正反物质差异,和标准模型的预言之间存在的巨大鸿沟,或许可以借此得以弥补。

更古怪的是,中微子的质量甚至有可能根本不是通过希格斯机制获得的。因为中微子不携带任何的“荷”,它自己就是自己的反物质。果真如此的话,它的质量可能来自于它与自身的相互作用,而并非来自于它同希格斯场的相互作用。灵敏的地下实验装置正在寻找极其罕见的核衰变,那些衰变或许会告诉我们答案。

新浦京www81707con 19大型强子对撞机中的质子-质子对撞,能够产生出希格斯玻色子,但希格斯玻色子转瞬就会衰变成其他粒子。通过分析衰变产物,科学家能够反推出希格斯玻色子。图片来源:《新科学家》

符合标准模型吗?

如果承认已经诱捕到的就是希格斯玻色子,我们就没有任何转还的余地了——因为标准模型已经预言了关于它的所有一切。

尽管我们相当确定,新发现的粒子正如希格斯粒子那样会衰变成携带作用力的玻色子,但我们还不太确定它会不会衰变成构成物质的费米子。在更为罕见(或者说隐藏更深)的衰变中,希格斯粒子会衰变成底夸克、τ子,甚至μ子。升级之后的大型强子对撞机应该能够精确地测量这些衰变。

标准模型还对希格斯粒子应该如何与顶夸克发生相互作用给出了明确的预言。(希格斯粒子无法衰变成顶夸克,因为顶夸克太重了。)任何不同于预言的偏差,都将为新物理学提供一丝迹象。

最让人捉急的问题在于这个粒子的质量。在标准模型中,希格斯粒子与它自身及周围粒子的相互作用似乎暗示,它应该拥有巨大的质量。但大型强子对撞机中发现的这个粒子,质量要小得多。

对标准模型加以“微调”,让两个巨大的数字几乎(但又不完全)相互抵消,应该能够解决这个问题,使得希格斯粒子拥有较小的质量。但许多人不喜欢这种修正,认为这样的修正让理论变得有点不自然了。

一个受人欢迎的提议能够解决这个问题,那就是超对称。这种理论通过费米子和玻色子之间的一种对称,扩展了标准模型。它预言了一大批新粒子,每一个玻色子都有一个费米子与它对应,反之亦然。这些新粒子之间的相互作用,能够自然而然地抵消使得希格斯粒子质量增大的那些因素。

问题在于,不论是大型强子对撞机,还是任何其他设备,目前都还没有看到任何证据表明存在这些粒子——事实上,它们没有找到任何证据支持任何超越标准模型的理论所作的预言。如果我们找到了一个希格斯粒子,却没有找到任何其他东西,或许我们就必须承认,自己生活在一个看似有点不太自然的世界之中。又或者,我们只是漏过了标准模型自身的某些细微之处。而最让人激动人心的事情莫过于,在标准模型之外还有另一层全新的宇宙结构在等待着我们去发现。

1908年至1909年间,欧内斯特·卢瑟福在研究α粒子散射的过程中发现了α粒子的大角度散射现象,从而猜想原子内部存在一个强电场。其后他于1911年发表了论文《物质对α、β粒子的散射和原子构造》,通过散射实验的结果提出了全新的原子结构模型:正电荷集中在原子中心,即原子中心存在原子核。事实上,卢瑟福并非提出原子结构的“行星模型”的第一人,然而这类模型的问题在于,在经典电磁理论框架下,近距的电磁相互作用无法维持这样的有心力系统的稳定性(参见广义相对论中的开普勒问题中所描述的近距的万有引力相互作用在经典力学中也会给太阳系带来同样问题);此外,在经典理论中运动电子产生的电磁场还会产生电磁辐射,使电子能量逐渐降低,对于这些难题卢瑟福采取了回避的对策。

为提取信号,大型强子对撞机两个实验项目组ATLAS(超环面仪器)和CMS(紧凑μ子线圈)各自组合了大型强子对撞机的两次运行数据进行分析。结果检测到希格斯玻色子衰变为一对底夸克。此外,两个项目组还在当前的测量精度范围内测量到与标准模型预测相一致的衰减速率。

是希格斯粒子吗?

等到大型强子对撞机在2015年年初重启之时,它会以更高的频率碰撞粒子,能量则比升级前几乎翻番。如此一来,科学家便能探测新发现粒子的若干特性,检验它到底是不是给所有其他粒子赋予质量的那个粒子。

自旋便是有待探测的特性之一。希格斯玻色子之所以被归类为玻色子,是因为理论预期它的自旋应该为整数——这就使它与光子之类携带作用力的粒子被归入了同一大类。目前发现的所有玻色子,自旋都为1;而构成物质的粒子,比如夸克和电子,自旋都为半整数(比如1/2)。

但是,希格斯粒子并不是作用力的携带者。作为赋予其他所有粒子质量的一个背景场所产生的粒子,希格斯粒子必定能够与所有其他粒子发生相互作用,不管它们自旋是多少——这种情况,只有当它的自旋为0时,才有可能出现。目前的证据已经相当具有说服力,但对这种新粒子的衰变产物的角分布进行更精确的测量将告诉我们,有没有什么变故隐藏在其中。

另一个关键问题在于,新发现的粒子如何与W玻色子和Z玻色子发生相互作用。科学家认为,正是通过这些相互作用,希格斯玻色子才把弱电力分割成了电磁力和弱核力。现在,我们已经有一只脚站在了更坚实的土壤之上:新粒子衰变成W玻色子和Z玻色子的概率与标准模型预言的希格斯玻色子大致相符。进一步的测量或许会揭示它与标准模型的细微差异,也可能会揭示某些扩展模型中预言的其他希格斯玻色子。

但是,我们已经了解到了足够多的信息,把新发现的粒子称为某种希格斯玻色子,肯定是没错的。

 

编译自:《新科学家》,The Higgs Boson

相关的果壳网小组

  • 生活大爆炸
  • 怎样学习大学物理
  • 万物至理

1912年至1913年间,丹麦物理学家尼尔斯·玻尔肯定了卢瑟福的原子模型,但同时指出原子的稳定性问题不能在经典电动力学的框架下解决,而唯有依靠量子化的方法。

标准模型中的基本粒子

玻尔从氢原子光谱的巴耳末公式和约翰尼斯·斯塔克的价电子跃迁辐射等概念受到启发,对围绕原子核运动的电子轨道进行了量子化,而原子核和电子之间的动力学则依然遵守经典力学,因此一般来说玻尔模型是一种半经典理论。这些内容发表在他1913年的著名三部曲论文《论原子构造和分子构造》中。论文中他建立了一个电子轨道量子化的氢原子模型,这一模型是基于两条假设之上的:

到目前为止,标准模型是物理学对于物质世界最深刻和最客观的认识,是描述物质基本组成和运行最成功的理论。标准模型认为,物理真空并不是一无所有,真空中充满场,场的激发态是粒子。粒子分为组成子和媒介子,组成子即构成现有物质世界的“基本”粒子,媒介子是传递相互作用的粒子。

1、体系在定态中的动力学平衡可以藉普通力学进行讨论,而体系在不同定态之间的过渡则不能在这基础上处理。

组成子(物质子)的自旋为半奇数,是费米子,分为夸克和轻子。夸克有三代,分别为:(u,d),(c,s),(t,b)[英文名称为:(up
quark, down quark),(charm quark, strange quark),(top quark or truth
quark,bottom quark or beauty
quark);中文名称为:(上夸克,下夸克),(粲夸克,奇异夸克),(顶夸克又叫真理夸克,底夸克又叫美丽夸克)];轻子也有三代,分别为,(e,ve),(μ,vμ),(τ,vτ)[英文名称为:(electron,
electron neutrino),(muon, muon neutrino),(tau,tau
neutrino);中文名称为(电子,电子中微子),(μ子,μ子中微子),(τ子,
τ子中微子)],不同代的中微子之间可以互相转变的,即所谓的中微子振荡,这种现象要求中微子具有质量,超出了标准模型。媒介子(传播子)的自旋为整数,是玻色子,分为:中间玻色子,W±和Z0,传递弱相互作用;光子,传递电磁相互作用;胶子,传递强相互作用;希格斯子,使得物质拥有质量。传递引力相互作用的引力子至今还没有发现。

2、后一过程伴随有均匀辐射的发射,其频率与能量之间的关系由普朗克理论给出。

另外,玻色子遵循玻色-爱因斯坦统计,不遵守泡利不相容原理(电子简并压是由泡利不相容原理产生的,在天体演化中,它导致了白矮星的形成),在低温时可以发生玻色-爱因斯坦凝聚。费米子服从费米-狄拉克统计,遵守泡利不相容原理。

这一模型很好地描述了氢光谱的规律,并且和实验观测值相当符合。此外,玻尔还从对应原理出发,将电子轨道角动量也进行了量子化,并给出了电子能量、角频率和轨道半径的量子化公式。玻尔模型在解释氢原子的发射和吸收光谱中取得了非常大的成功,是量子理论发展的重要里程碑。

标准模型中的费米子有六种是夸克(以紫色表示),有六种是轻子(以绿色表示),在这两类粒子右边有四种规范玻色子(以红色表示),最右边是希格斯玻色子(以黄色表示)。

不过,玻尔模型在很多地方仍然是粗略的:例如它只能解释氢原子光谱,对其他稍复杂的原子光谱就毫无办法;它创立之时人们还没有自旋的概念,从而玻尔模型无法解释原子谱线的塞曼效应和精细结构;玻尔模型也无法说明电子在两条轨道之间跃迁的过程中到底是处于一种什么状态(即泡利所批评的“糟糕的跃迁”)。

新浦京www81707con 20

德国物理学家阿诺·索末菲在1914年至1915年间发展了玻尔理论,他提出了电子椭圆轨道的量子化条件,从而将开普勒运动纳入到量子化的玻尔理论中并提出了空间量子化概念,他还给量子化公式添加了狭义相对论的修正项。

图3 标准模型中的基本粒子

索末菲的量子化模型很好地解释了正常塞曼效应、斯塔克效应和原子谱线的精细结构,他的理论收录在他在1919年出版的《原子结构与光谱线》一书中。索末菲在玻尔模型的基础上给出了更一般化的量子化条件:{\displaystyle
\oint p_{i}dq_{i}=n_{i}h\,\!}

来源:科普中国

,这一条件被称作旧量子条件或威耳逊-索末菲量子化定则,与之相关联的理论是埃伦费斯特指出的被量子化的物理量是一个绝热不变量。

如表所示,总计共有61种基本粒子。色(color)是一种内部自由度。值得注意的是,由于色禁闭和渐进自由,至今还没能观察到自由夸克,观察到的只是由两个夸克构成的介子、三个夸克构成的重子、四个夸克或者五个夸克构成的奇特态粒子。现代粒子物理学的各种理论模型是在标准模型的框架下,对粒子的各种性质进行更为详细和精确地描述。

1905年爱因斯坦对电磁辐射的能量进行量子化从而提出了光量子的概念,但此时的光量子只是能量不连续性的一种体现,还不具有真实的粒子概念。1909年,爱因斯坦发表了《论我们关于辐射的本性和组成的观点的发展》,在这篇发言兼论文中爱因斯坦证明了如果普朗克黑体辐射定律成立,则光子必须携带有动量并应被当作粒子对待,同时还指出电磁辐射必须同时具有波动性和粒子性两种自然属性,这被称作波粒二象性。

粒子的内秉性质包括:质量,电荷,自旋,宇称性等;相互作用性质包括:产生道的截面,衰变道的分支比等。

1917年,爱因斯坦在《论辐射的量子理论》中更深入地讨论了辐射的量子特性,他指出辐射具有两种基本方式:自发辐射和受激辐射,并建立了一整套描述原子辐射和电磁波吸收过程的量子理论,这不但成为五十年后激光技术的理论基础,还促成了现代物理学中迄今最精确的理论——量子电动力学的诞生。

标准模型中的希格斯机制

1923年,美国物理学家阿瑟·康普顿在研究X射线被自由电子散射的情况中发现X射线出现能量降低而波长变长的现象,他用爱因斯坦的光量子论解释了这一现象并于同年发表了《X射线受轻元素散射的量子理论》。康普顿效应从而成为了光子存在的论断性证明,它证明了光子携带有动量,爱因斯坦在1924年的短评《康普顿实验》中高度评价了康普顿的工作。

在粒子物理学里,标准模型是一种被广泛接受的框架,可以描述强力、弱力及电磁力这三种基本力及组成所有物质的基本粒子。除了引力以外,标准模型可以合理解释这世界中的大多数物理现象。

1923年,法国物理学家路易·德布罗意在光的波粒二象性,以及布里渊为解释玻尔氢原子定态轨道所提出的电子驻波假说的启发下,开始了对电子波动性的探索。

早期的标准模型所倚赖的规范场论阐明,基本力是源自于规范不变性,是由规范玻色子来传递。规范场论严格规定,规范玻色子必须不带有质量,因此,传递电磁相互作用的规范玻色子(光子)不带有质量。光子的质量的确经实验证实为零。

他提出了实物粒子同样也具有波粒二象性的假说,对电子而言,电子轨道的周长应当是电子对应的所谓“位相波”波长的整数倍。德布罗意在他的博士论文中阐述了这一理论,但他同时认为他的电子波动性理论所描述的波的概念“像光量子的概念一样,只是一种解释”,因此真正的粒子的波函数的概念是等到薛定谔建立波动力学之后才完备的。另外,德布罗意在论文中也并没有明确给出物质波的波长公式,虽然这一想法已经反映在他的内容中。

借此类推,传递弱相互作用的规范玻色子(W玻色子、Z玻色子)应该不带有质量,可是实验证实W玻色子与Z玻色子的质量不为零,这显示出早期模型不够完善,因此须要建立特别机制来赋予W玻色子、Z玻色子它们所带有的质量。

德布罗意的博士论文被爱因斯坦看到后得到了很大的赞许,爱因斯坦并向物理学界广泛介绍了德布罗意的工作。这项工作被认为是统一了物质粒子和光的理论,揭开了波动力学的序幕。1927年,贝尔实验室的克林顿·戴维孙和雷斯特·革末进行了著名的戴维孙-革末实验,他们将低速电子射入镍晶体,观测每一个角度上被散射的电子强度,所得的衍射图案与布拉格预测的X射线的衍射图案相同,这是电子也会像波一样发生衍射的确凿证明。特别地,他们发现对于具有特定能量的入射电子,在对应的散射角度上散射最明显,而从布拉格光栅衍射公式得到的衍射波长恰巧等于实验中具有对应能量电子的德布罗意波长。

由此在1960年代,几位物理学者研究出一种机制,其能够利用自发对称性破缺来赋予基本粒子质量,同时又不会抵触到规范场论。这机制被称为希格斯机制,希格斯机制已被实验证实。但是,物理学者仍旧不清楚关于希格斯机制的诸多细节。

有别于旧量子论的现代量子力学的诞生,是以1925年德国物理学家维尔纳·海森堡建立矩阵力学和奥地利物理学家埃尔温·薛定谔建立波动力学和非相对论性的薛定谔方程,从而推广了德布罗意的物质波理论为标志的。

新浦京www81707con 21

矩阵力学是第一个完备且被正确定义的量子力学理论,通过将粒子的物理量阐释为随时间演化的矩阵,它能够解释玻尔模型所无法理解的跃迁等问题。矩阵力学的创始人是海森堡,另外他的德国同胞马克斯·玻恩和帕斯库尔·约当也做出了重要工作。

图4 英国物理学家彼得•希格斯

1924年,23岁的海森堡还只是哥廷根大学未取得终身教职的一名年轻教师,他于同年九月应玻尔的邀请来到哥本哈根进行六个月的交流访问,此间海森堡受到了玻尔和他的学生汉斯·克拉莫斯等人的深刻影响。

来源:www.ed.ac.uk

1925年海森堡回到哥廷根,在五月之前他的工作一直是致力于计算氢原子谱线并试图只采用可观察量来描述原子系统。同年六月为了躲避鼻炎的流行,海森堡前往位于北海东部并且没有花粉侵扰的黑尔戈兰岛。在那里他一边品味歌德的抒情诗集,一边思考着光谱的问题,并最终意识到引入不可对易的可观察量或许可以解决这个问题。

这机制假定宇宙遍布着希格斯场,其能够与某些基本粒子相互作用,并且利用自发对称性破缺使得它们获得质量。

其后他在回忆中写道:“当时正是凌晨三点,最终的计算结果即将出现在我面前,起初这让我深深震撼了。我非常兴奋以至于无法考虑睡觉的事,于是我离开房间前往岩石的顶端等待朝阳。”我们可以想象一下,他的高兴,他的喜悦。

希格斯玻色子是伴随着希格斯场的带质量玻色子,是希格斯场的量子激发。假若能证实希格斯玻色子存在,就可以推论希格斯场存在,就好像从观察海面的波浪可以推论出海洋的存在。

回到哥廷根后,海森堡将他的计算递交给沃尔夫冈·泡利和马克斯·玻恩评判,他对泡利附加评论说:“所有内容对我来说都还很不清楚,但似乎电子不应当在轨道上运动了”。

据说,希格斯在一次散步的过程中突发奇想,他认为空间就像水,物体在水中运动时会受到阻力,让运动变得困难;相应的,粒子穿行于空间中也会受到某种阻碍,使其需要有所付出才能获得加速度,在宏观上就体现为“质量”。这就是所谓的“希格斯机制”。

在海森堡的理论中,电子不再具有明确的轨道,他从而意识到电子的跃迁几率并不是一个经典量,因为在描述跃迁的傅里叶级数中只有频率是可观察量。他用一个系数矩阵取代了经典的傅里叶级数,在经典理论中傅里叶系数表征着辐射的强度,而在矩阵力学中表征强度的则是位置算符的矩阵元的大小。

理论物理学家布莱恩•格林做过一个有趣的比喻。可以吧“希格斯场”想象成“狗仔队”,把空间中各种物质看做“明星”。“狗仔队”看见他们就会一拥而上,将其团团围住,而明星必须要使劲往前挤才能逃脱;明星挤得越费劲,与狗仔的互动越多,受到的阻力越大,说明他的“名气”越大。明星们的“名气”大小不同,相应的,不同粒子获得的质量也不同。比如光子的静质量为零(龙套演员?),因此光具有空间中最快的速度。

海森堡理论的数学形式中系统的哈密顿量是位置和动量的函数,但它们不再具有经典力学中的定义,而是由一组二阶(代表着过程的初态和终态)傅里叶系数的矩阵给出。

什么是自发对称破缺?

玻恩在阅读海森堡的理论时,发现这一数学形式可以用系统化的矩阵方法来描述,这一理论从而被称作矩阵力学。于是玻恩和他的助手约尔当一起发展了这种理论的严谨数学形式,他们的论文在海森堡的论文发表六十天后也公布于众。

原来具有较高对称性的系统出现不对称因素,其对称程度自发降低,
这种现象叫做对称性自发破缺。或者用物理语言叙述为:控制参量 l
跨越某临界值时,系统原有对称性较高的状态失稳,新出现若干个等价的、对称性较低的稳定状态,系统将向其中之一过渡。

同年11月16日,玻恩、海森堡和约尔当三人又联合发表了一篇后续论文,论文将情形推广到多自由度及含有简并、定态微扰和含时微扰,全面阐述了矩阵力学的基本原理:

用一个形象的类比来解释什么是自发对称性破缺:一支以笔尖直立于水平面上的铅笔,可以被看成是完全对称的,任何方向对它来说都没有区别;但如果这支铅笔倒在水平面上,它的对称性就被“打破”了,而它也同时达到了自己的基态或者说最低能阶,此时它的状态最为稳定。

1.所有的可观察量都可用一个厄米矩阵表示,一个系统的哈密顿量是广义坐标矩阵和与之共轭的广义动量矩阵的函数。

希格斯粒子的发现

2.可观察量的观测值是厄米矩阵的本征值,系统能量是哈密顿量的本征值。

希格斯玻色子(英语:Higgs
boson)是标准模型里的一种基本粒子,是一种玻色子,自旋为零,宇称为正值,不带电荷、色荷,极不稳定,生成后会立刻衰变。

3.广义坐标和广义动量满足正则对易关系(强量子条件)。

希格斯玻色子是希格斯场的量子激发。根据希格斯机制,基本粒子因与希格斯场耦合而获得质量。假若希格斯玻色子被证实存在,则希格斯场应该也存在,而希格斯机制也可被确认为基本无误。

4.跃迁频率满足频率条件。

物理学者用了四十多年时间寻找希格斯玻色子的踪迹。大型强子对撞机(LHC)是全世界至今为止最昂贵、最复杂的实验设施之一,其建成的一个主要任务就是寻找与观察希格斯玻色子与其它种粒子。

如上所述,海森堡的矩阵力学所基于的观念是,电子本身的运动是无法观测的,例如在跃迁中只有频率是可观察量,只有可观察量才可被引入物理理论中。因此如果不能设计一个实验来准确观测电子的位置或动量,则谈论一个电子运动的位置或动量是没有意义的。

2012年7月4日,欧洲核子研究组织(CERN)宣布,LHC的紧凑μ子线圈(CMS)探测到质量为125.3±0.6GeV的新玻色子(超过背景期望值4.9个标准差),超环面仪器(ATLAS)测量到质量为126.5GeV的新玻色子(5个标准差),这两种粒子极像希格斯玻色子。

1927年,海森堡从位置和动量的共轭对易关系推导出了两者的不确定性之间的关系,这被称作不确定性原理。海森堡设想了一个理想实验,即著名的海森堡显微镜实验,来说明电子位置和动量的不确定性关系;以及通过施特恩-盖拉赫实验来说明自旋的几个正交分量彼此之间的不确定性关系。

2013年3月14日,欧洲核子研究组织发表新闻稿正式宣布,先前探测到的新粒子暂时被确认是希格斯玻色子,具有零自旋与偶宇称,这是希格斯玻色子应该具有的两种基本性质。

不过,玻尔虽然对海森堡的不确定性原理表示赞同,却否定了他的理想实验。玻尔认为不确定性原理其实是波粒二象性的体现,但实验观测中只能展示出粒子性或波动性两者之一,即不可能同时观测到电子的粒子性和波动性,这被玻尔称作互补原理。

这也是第一个被发现的基本标量粒子(自旋为0)。以下列出几个检试这125GeV粒子是否为希格斯子的实验项目:

海森堡的不确定性原理、玻尔的互补原理和波恩的波函数统计诠释以及相关联的量子观念,构成了被当今物理学界最为认可的量子力学思想——哥本哈根诠释。


玻色子:只有玻色子才能够衰变为两个光子。从实验已观常到这125GeV粒子能够衰变为两个光子,因此,这粒子是玻色子。

1925年,在苏黎世大学担任教授的埃尔温·薛定谔读到了德布罗意有关物质波理论的博士论文,薛定谔本人又受爱因斯坦波粒二象性等思想的影响颇深,他从而决定建立一个描述电子波动行为的波方程。


零自旋:这可以从检验衰变模式证实。在初始发现之时,观察到125GeV粒子衰变为两个光子,根据对称性定律,可以排除自旋为1,剩下两个候选自旋为0或2。这决定于衰变产物的运动轨道是否有嗜好方向,假若没有,则自旋为0,否则,自旋为2。2013年3月,125GeV粒子的自旋正式确认为0。

当时由于人们还不十分理解电子自旋这一量子力学中最大的相对论效应,薛定谔还无法将波动方程纳入狭义相对论的框架中,他从而试图建立了一个非相对论性的波方程。1926年1月至6月间,薛定谔发表了四篇都名为《量子化就是本征值问题》的论文,详细论述了非相对论性电子的波动方程、电子的波函数以及相应的本征值(量子数)。


偶宇称(正宇称):从研究衰变产物运动轨道的角度,可以查得到底是偶宇称还是奇宇称。有些理论主张,可能存在有膺标量(pseudoscalar)希格斯子,这种粒子拥有奇宇称。2013年3月,125GeV粒子的宇称暂时确认为正宇称。排除零自旋奇宇称假说,置信水平超过99.9%。

哈密顿曾认为力学是波动理论在波长为零时的极限情形,而薛定谔正是受此引导发展了这一观念,他将哈密顿力学中的哈密顿-雅可比方程应用于爱因斯坦的光量子理论和德布罗意的物质波理论,利用变分法得到了非相对论量子力学的基本方程——薛定谔方程。

希格斯玻色子是因物理学者彼得•希格斯而命名。他是于1964年提出希格斯机制的六位物理学者中的一位。2013年10月8日,因为“次原子粒子质量的生成机制理论,促进了人类对这方面的理解,并且最近由欧洲核子研究组织属下大型强子对撞机的超环面仪器及紧凑μ子线圈探测器发现的基本粒子证实”,弗朗索瓦•恩格勒、彼得•希格斯荣获2013年诺贝尔物理学奖。

薛定谔发现这个定态方程的能量本征值正对应着氢原子的能级公式,由此他得出,量子化条件是不需要像玻尔和索末菲那样人为引入的,它可以很自然地从本征值问题推出。

在b夸克的大海中捞针

在三维球坐标系下将薛定谔方程应用于氢原子可以得到三个量子化条件:轨道量子数(决定电子的能级)、角量子数(决定电子的轨道角动量)和磁量子数(决定电子在垂直方向的磁矩)。在其后的论文中,他分别讨论了含时的薛定谔方程、谐振子、微扰理论,并应用这些理论解释了斯塔克效应和色散等问题。

希格斯机制,解决了弱矢量玻色子(W和Z)在理论上似乎不可能具有质量的难题。2012年发现希格斯玻色子是通过其衰变成光子实现的,Z玻色子和正负W玻色子也是标准模型建立在此机制上的胜利。希格斯场同样能够以一种优雅的方式为带电费米子(夸克和轻子)获得质量,严格按照和粒子质量成正比的所谓“汤川耦合”相互作用而实现的。2018年,观察到希格斯玻色子衰变成轻子τ,提供了这种类型相互作用的第一个直接证据。

薛定谔把自己的理论称作波动力学,这成为了现代量子力学的另一种形式。特别是,薛定谔的理论是以一个偏微分方程为基础的,这种波动方程对人们而言相当熟悉,相比之下海森堡的矩阵力学所采用的数学形式则不那么易懂(在海森堡的理论之前,矩阵只是数学家的玩具,从未被引入任何物理理论中)。因此一开始波动力学比矩阵力学要更受科学界的青睐,爱因斯坦、埃伦费斯特等人对薛定谔的工作都非常赞赏。

标准模型已对希子的衰变模式给出详细预测。LHC已于2013年观察到双光子道等,证实希格斯场可以与玻色子相互作用。LHC又于2014年观察到其它两种模式,证实希格斯场可以与费米子相互作用。这意味着希子不只是衰变至传递作用力的玻色子,它还衰变至组成物质的费米子。

直到1926年薛定谔在研究海森堡的理论之后,发表了《论海森堡、玻恩与约尔当和我的量子力学之间的关系》,证明了两种理论的等价性;不过,对当时大多数的物理学家而言,波动力学中数学的简明性仍然是显而易见的。

发现希格斯粒子六年之后,ATLAS探测器已经观察到按照标准模型预言的那样进行衰变的希格斯玻色子的30%。然而,希格斯玻色子到底夸克对的衰变(H→bb),有望用来解释所有可能衰变中几乎60%的衰变。观察到这个衰变模式并且对其比例的测量,是证实(或者否定)费米子通过标准模型预言的汤川相互作用产生质量必须的步骤。

波动力学建立后,人们还一直不清楚波函数的物理意义,薛定谔本人也只能认为波函数代表着粒子波动性的振幅,而粒子则是多个波函数所构成的波包(所谓电子云模型)。1926年,玻恩在爱因斯坦光量子理论中光波振幅正比于光量子的几率密度这一观点的启发下,联系到量子力学中的散射理论,提出了波函数的统计诠释:波函数是一种几率波,它的振幅的平方正比于粒子出现的几率密度,并且波函数在全空间的积分是归一的。玻恩由于波函数的统计诠释获得了1954年的诺贝尔物理学奖。

非常少有的H→γγ这样的衰变模式在发现希格斯粒子时就已经找到,而大量存在的H→bb衰变,为什么还花费6年这么长的时间才实现这次观察?主要原因在于:在质子-质子相互作用中希格斯玻色子的大量生产过程,只导致一对来自b夸克碎片的粒子射流(b-jets),它们跟来自强相互作用(量子色动力学或QCD)生产的b-夸克对形成的绝对优势本底几乎不可能区分开。为了克服这一挑战,必须去考虑QCD中不存在的,量虽然少但是特征明显的生产过程,其中最有效的是能够把希格斯子的生产跟矢量玻色子W或者Z联系起来的那些。轻子衰变W→lv、Z→ll、Z→vv(其中l
代表电子或者μ子)就能够提供这样的信号,允许有效触发又能大大降低QCD本底。

1921年,德国物理学家阿尔弗雷德·朗德指出反常塞曼效应意味着电子的磁量子数只能为半整数。1924年,奥地利物理学家沃尔夫冈·泡利提出这个半整数代表着电子的第四个自由度,并在此基础上提出了泡利不相容原理。

然而,希格斯玻色子信号遗留的数量级小于从顶夸克或者矢量玻色子生产的遗留本底引起的相似特征,比如,一个顶夸克对能够衰变为tt→[(W→lv)b][(W→qq)b],末态包含一个电子或者一个缪子和两个b夸克,跟(W→lv)(H→bb)信号完全一样。

泡利最初未能对这第四个自由度的物理意义作出解释,但其后美国物理学家拉尔夫·克罗尼格提出这个自由度可以看作是电子的一种内禀角动量,相当于电子在沿自己的轴旋转,然而泡利对此不以为然,他很反对将这种经典力学模型引入量子力学中。

从这样的本底区分出信号的障碍在于不变的质量,这种质量分布的例子如图5所示,其中信号和相应的本底差距用数据显示出来。

不过仅半年后,埃伦费斯特的两个学生:乌伦贝克和古兹米特再次提出了类似的自旋假说,两人在埃伦费斯特的推荐下投稿给《自然》杂志。尽管洛伦兹从这种假说得出电子表面速度将远远大于光速,但其后由于玻尔、海森堡和英国物理学家卢埃林·托马斯等人在相对论力学下的计算都支持这一理论,海森堡和约尔当用矩阵对自旋做了充分的描述,自旋模型最终得到了充分肯定。

新浦京www81707con 22

不过,泡利始终反对这种“电子自转”的经典模型,而他最终也真正做到了将电子自旋和自转严格区别:自旋并不是电子做的经典的自转,它应当理解为电子的一种内禀属性,这种属性被泡利用量子化的矩阵来描述。泡利后来将自旋的概念引入薛定谔方程中,得到了在外加电磁场作用下考虑电子自旋的量子力学波动方程,即泡利方程。

图5:在(W→lv)(H→bb)探索通道里的质量分布,信号用红色表示,不同的本底用其他不同颜色表示,数据表示为有误差棒的点。

1928年,英国物理学家保罗·狄拉克在泡利方程的基础上,试图建立一个满足洛伦兹协变性并能够描述自旋为1/2粒子的薛定谔方程,这么做的部分动机也是试图解决描述自旋为零的相对论性波方程——克莱因-戈尔登方程所出现的负值概率密度和负能量的问题。

来源:ATLAS 小组/CERN

狄拉克考虑到薛定谔方程只含对时间的一阶导数而不具有洛伦兹协变性,他从而引入了一组对空间的一阶导数的线性叠加,这组叠加的系数是满足洛伦兹协变性的矩阵。由于系数是矩阵,则原有的波函数必须改为矢量函数,狄拉克将这些矢量函数称作旋量。如此得到的波动方程被称作狄拉克方程,它成为了相对论量子力学的基本方程,同时它在量子场论中也是描述自旋为1/2粒子(夸克和轻子)的基本旋量场方程。在此项工作中狄拉克首创了“量子电动力学”一词,他从而被看作是量子电动力学的创始人。

当所有的WH和ZH衰变道联合起来并且从数据减去本底(除去WZ和ZZ生产),分布情况由图6所示,显示出从Z玻色子衰变成b-夸克对清晰尖峰,表明分析过程有效,上边的肩部在形状和比列上都和希格斯玻色子生产的预言一致。

狄拉克发现,虽然旋量的概率密度可以保证为正值,方程的本征值却仍然会出现负能量。在理论上如果电子可以拥有能级低至静止能量负值的负能量态,则所有的电子都能通过辐射光子而跃迁到这一能级,狄拉克由此推算出在这种情形下整个宇宙会在一百亿分之一秒内毁灭。狄拉克对这一问题的解释是著名的狄拉克之海:真空中排满了具有负能量的电子,在泡利不相容原理的制约下正能量的电子无法跃迁到负能量态。同时,狄拉克还由此提出了反电子的存在,它同时具有负能量态电子的所有相反属性,即具有正能量和正电荷。1932年狄拉克关于反物质存在的预言通过美国物理学家卡尔·安德森使用宇宙射线制造出正电子的实验得到了证实。

新浦京www81707con 23

1930年,狄拉克出版了他的量子力学著作《量子力学原理》,这是整个科学史上的一部里程碑之作,至今仍然是流行的量子力学教材之一。狄拉克在这部著作中将海森堡的矩阵力学和薛定谔的波动力学统一成同一种数学表达:

图6:质量的分布源自于探索通道的结合,其中减去除了WZ和ZZ生产之外的所有本底,数据(有误差棒的点)相比于WZ和ZZ生产(灰色)和WH和ZH(红色)的期望。

1.用相空间中的厄米算符来表示可观察量,并用希尔伯特空间中的矢量来表示系统的量子态。

来源:ATLAS 小组/CERN

2.对可观察量而言,厄米算符的本征态构成一个正交归一的完备坐标系,所有可观察量的测量值都是厄米算符的本征值,对系统的测量会导致系统的波函数坍缩到对应的本征态。

新的乌云

3.共轭算符之间满足正则对易关系,从而可得到不确定性原理。

美国物理学家、1988年诺贝尔物理学奖获得者利昂•莱德曼曾著有粒子物理方面的科普书籍《上帝粒子:如果宇宙是答案,那么问题是什么?》,后来媒体也沿用了这一称呼,常常将希格斯子称作是“上帝粒子”(The
GodParticle)。

4.量子态随时间的动力学演化可由含时的薛定谔方程描述(薛定谔绘景),算符随时间的动力学演化可由类似的海森堡方程描述(海森堡绘景),这两者是等价的。

一直到今天,希格斯玻色子被发现,走了近100年,我们才发现,物理学大门还没有完全打开。希格斯粒子被发现,足以证明人类是多么了不起的生灵。预言的衰变机制被观测到进一步支持了摸准模型。所以引力波和希格斯玻色子的发现,绝对称的上是划时代的发现。对于我们探索宇宙的本质有极大的帮助。希格斯玻色子对于标准模型是如此的重要,原因是它的存在证明了希格斯场。其他粒子在希格斯玻色子作用下产生质量,为宇宙形成奠定基础。

1939年狄拉克引入了他的数学符号系统——狄拉克符号,并应用到《量子力学原理》中。直到今天,狄拉克符号仍然是最广泛使用的一套量子力学符号系统。

而涉及到质量,我们必然会考虑引力。也就是希格斯场与引力有什么关系?但关于希格斯机制,关于强,弱,电三种力统一的根本性问题,我们还不知道。还有引力也还孤立在这个规范场论之外。

量子力学的确令人印象深刻,但内心中有个声音告诉我这不符合实际情况。这个理论解释了很多,但没有真正让我们离那个“老家伙”的秘密更近一步。我,无论如何都有理由相信,他不掷骰子。— 爱因斯坦于1926年12月4日写给玻恩的信

100多年前,开尔文爵士宣称物理大厦已经落成,所剩只是一些修修补补的工作,但它的美丽而晴朗的天空却被两朵乌云笼罩了。一是迈克尔逊莫雷实验(“以太”与光行差的矛盾),一是黑体辐射与”紫外灾难”。两朵乌云中分别诞生了“相对论”和“量子论”。

玻尔、海森堡等人建立哥本哈根诠释之后,立刻遭到了以爱因斯坦为首的一批物理学家的反对。爱因斯坦非常反对哥本哈根学派所作出的波函数的诠释、不确定性原理以及互补原理等观点。在爱因斯坦看来,电子的这种“自由意志”行为是违反他所钟爱的因果律的,他从而认为波函数只能反映一个系综的粒子的量子行为,而不像是玻尔所说的一个粒子的行为。这种矛盾引发了分别以玻尔和爱因斯坦为代表的两种学说的论战,时间长达半个多世纪之久。

就像19世纪末的经典物理学一样,与标准模型的成功不相称的是,它预测中微子应该是没有质量的,而中微子震荡表明应该有质量。标准模型也无法描述暗物质的存在,暗能量是个什么东西。

其中的论战就是我在本书第二章《从EPR悖论,到贝尔不等式,我们经历了什么?》的论述。

这些“乌云”会让我们从背后找到新的大一统理论的答案吗?值得期待和思考。

这种论战直到1965年,北爱尔兰物理学家约翰·贝尔在隐变量基础上提出贝尔不等式,这为隐变量理论提供了实验验证方法。从二十世纪七十年代至今,对贝尔不等式的验证给出的大多数结果是否定的;即使如此,玻尔-爱因斯坦论战的结果至今还未有最终的定论。

新浦京www81707con 24

我们知道了量子电动力学起源于1927年保罗·狄拉克将量子理论应用于电磁场量子化的研究工作。他将电荷和电磁场的相互作用处理为引起能级跃迁的微扰,能级跃迁造成了发射光子数量的变化,但总体上系统满足能量和动量守恒。

图7 引力剧场——后发座星系团

狄拉克成功地从第一性原理导出了爱因斯坦系数的形式,并证明了光子的玻色-爱因斯坦统计是电磁场量子化的自然结果。现在人们发现,能够精确描述这类过程是量子电动力学最重要的应用之一。

来源:哈勃

另一方面,狄拉克所发展的相对论量子力学是量子电动力学的前奏,狄拉克方程作为狭义相对论框架下量子力学的基本方程,所描述的电子等费米子的旋量场的正则量子化是由匈牙利-美国物理学家尤金·维格纳和约尔当完成的。狄拉克方程所预言的粒子的产生和湮没过程能用正则量子化的语言重新加以描述。

参考文献

经历了早期取得的成功之后,量子电动力学遭遇了理论上一系列严重的困难:很多原本看上去平常的物理量,例如在外界电场作用下电子的能态变化(在量子电动力学的观点看来属于电子和光子的相互作用),在量子场论的计算方法下会发散为无穷大。到了二十世纪四十年代,这一问题被美国物理学家理查德·费曼、朱利安·施温格、日本物理学家朝永振一郎等人突破性地解决了,他们所用的方法被称为重整化。尽管他们各自研究所用的数学方法不同,美籍英裔物理学家弗里曼·戴森于1949年证明了费曼所用的路径积分方法和施温格与朝永振一郎所用的算符方法的等价性。

【1】Long-sought decay of Higgs boson observed,CERN

量子电动力学的研究在这时达到了顶峰,费曼所创造的费曼图成为了研究相互作用场的微扰理论的基本工具,从费曼图可直接导出粒子散射的S矩阵。

【2】见微知著,灵遁者

费曼图中的内部连线对应着相互作用中交换的虚粒子的传播子,连线相交的顶点对应着拉格朗日量中的相互作用项,入射和出射的线则对应初态和末态粒子的能量、动量和自旋。由此,量子电动力学成为了第一个能够令人满意地描述电子与反电子(旋量场)和光子(规范场)以及粒子产生和湮没的量子理论。

【3】2015 年诺贝尔物理学奖「中微子振荡」具体是在研究什么?,知乎

量子电动力学是迄今为止建立的最精确的物理理论:量子电动力学的实验验证的主要方法是对精细结构常数的测量,至今在不同的测量方法中最精确的是测量电子的反常磁矩。量子电动力学中建立了电子的无量纲旋磁比(即朗德g因子)和精细结构常数的关系,磁场中电子的回旋频率和它的自旋进动频率的差值正比于朗德g因子。

【4】希格斯粒子为什么重要?,知乎

从而将电子回旋轨道的量子化能量(朗道能级)的极高精度测量值和电子两种可能的自旋方向的量子化能量相比较,就可从中测得电子自旋g因子,这项工作是由哈佛大学的物理学家于2006年完成的,实验测得的g因子和理论值相比误差仅为一万亿分之一,而进一步得到的精细结构常数和理论值的误差仅为十亿分之一。对里德伯常量的测量到目前为止是精度仅次于测量反常磁矩的方法,但它的精确度仍要低一个数量级以上。

【5】天体物理导论,北京大学出版社

量子电动力学之后是量子色动力学的发展,二十世纪五十年代气泡室和火花室的发明,使实验高能物理学家发现了一批种类数量庞大并仍在不断增长的粒子——强子,种类如此繁多的一批粒子应当不会是基本粒子。

【6】终于观察到希格斯玻色子的底夸克(bb ̅)衰变方式!,物理学简报译文

维格纳和海森堡起初按电荷和同位旋对这些强子进行了分类,1953年美国物理学家默里·盖尔曼和日本物理学家西岛和彦在分类时又考虑了奇异数。

【7】我们怎么知道宇宙中存在暗物质与暗能量?,科普中国

1961年,盖尔曼和以色列物理学家尤瓦尔·奈曼)进一步提出了强子分类的八重态模型。盖尔曼和苏联物理学家乔治·茨威格于1963年修正了由日本物理学家坂田昌一早先提出的理论,并提出强子的分类情形可以用强子内部存在的具有三种味的更基本粒子——夸克来解释。

【8】希格斯玻色子,百度百科

苏联物理学家尼古拉·博戈柳博夫和他的学生在1965年提出,对于由三个反对称的(即具有同向自旋)奇夸克组成的Ω重子,由于这种情形违反泡利不相容原理,夸克应当具有一个另外的量子数。同样的情形也出现在Δ++重子中,在夸克模型中它由三个反对称的上夸克组成。同年,日本物理学家南部阳一郎等人分别独立提出夸克应当具有一个额外的SU(3)规范对称的自由度,这种自由度后来被称作色荷。南部等人还进一步提出了传递夸克之间相互作用的媒介子模型,这种媒介子是一组八种色的规范玻色子:胶子。

【8】粒子天体物理,中国科学技术大学出版社

实验中对自由夸克的检测总是以失败告终,这使得盖尔曼一再声称夸克只是存在于数学上的结构,不代表真实的粒子;不过他的意思实际是指夸克是被禁闭的。

【9】相对论百问,北京师范大学出版社返回搜狐,查看更多

费曼认为高能实验已经证明了夸克是物理实在的粒子,并按他的习惯称之为部分子。盖尔曼和费曼的不同观点在理论物理学界产生了深刻的分歧,费曼坚持认为夸克和其他粒子一样具有位置和动量的分布,盖尔曼则认为虽然特定的夸克电荷是可以定域化的,但夸克本身则有可能是无法定域化的。美国物理学家詹姆斯·比约肯指出如果夸克真的像部分子那样是实在的点粒子,则电子和质子的深度非弹性散射将满足特定关系,这一实验由斯坦福直线加速器中心于1968年证实。1973年,美国物理学家戴维·格娄斯和他的学生弗朗克·韦尔切克,以及美国物理学家休·波利策发现了强相互作用中的渐近自由性质,这使得物理学家能够利用量子场论中的微扰方法对很多高能实验作出相当精确的预言。1979年,德国电子加速器中心的正电子-电子串联环形加速器(PETRA)发现了胶子存在的直接证据。

责任编辑:

与高能下的渐进自由相对的是低能下的色禁闭:由于色荷之间的作用力不随距离增大而减小,现在普遍认为夸克和胶子永远无法从强子中释放。这一理论已经在格点量子色动力学的计算中被证实,但没有数学上的严格分析。克雷数学研究所悬赏一百万美元的“千禧年大奖难题”之一正是严格证明色禁闭的存在。

二十世纪二十年代,量子力学的建立给原子核物理带来了崭新的面貌。1932年密立根的学生卡尔·安德森在不了解狄拉克理论的情况下通过观测云室中的宇宙射线发现了正电子。同年,查德威克在卢瑟福提出的原子核内具有中子的假说的基础上,在卡文迪许实验室进行了一系列粒子撞击实验,并计算了相应粒子的能量。查德威克的实验证实了原子核内中子的存在,并测定了中子的质量。中子的发现改变了原子核原有的质子-电子模型,维尔纳·海森堡提出新的质子-中子模型,在这模型里,除了氢原子核以外,所有原子核都是由质子与中子组成。

1934年,法国的约里奥-居里夫妇通过用放射性钋所产生的α射线轰击硼、镁、铝等轻元素,会发射出很多粒子产物,尽管之后移开放射性钋,仍旧会继续发射粒子产物,这个现象导致了他们发现了人工放射性。

1934年,意大利物理学家恩里科·费米在用中子轰击当时已知的最重元素——92号元素铀时,得到了一种半衰期为13分钟的放射性元素,但它不属于任何一种已知的重元素。费米等人怀疑它是一种未知的原子序数为93的超铀元素,但在当时的条件下他无法做出判断。同年,费米又通过用中子和氢核碰撞获得了慢中子,慢中子的产生大大加强了中子在原子核实验中的轰击效果。

1938年德国化学家奥托·哈恩和弗里茨·斯特拉斯曼用慢中子轰击铀,从中得到了较轻的元素:镧和钡。哈恩将这一结果发信给当时受纳粹迫害而流亡中的好友,奥利地-瑞典物理学家莉泽·迈特纳,称自己发现了一种“破裂”的现象。

迈特纳次年在玻尔的肯定下发表了论文《中子导致的铀的裂体:一种新的核反应》,将这种现象称作核裂变,并为裂变提供了理论上的解释。迈特纳所用的解释就是爱因斯坦的狭义相对论中的质能等价关系,从而解释了裂变中产生的巨大能量的来源。她计算出每个裂变的原子核会释放2亿电子伏特的能量,这一理论解释奠定了应用原子能的基础。同年,德国-美国物理学家汉斯·贝特解释了恒星内部的核聚变循环。

粒子物理学是原子物理和原子核物理在高能领域的一个重要分支,相对于偏重于实验观测的原子核物理学,粒子物理更注重对基本粒子的物理本性的研究。就实验方面而言,研究粒子物理所需的能量往往要比原子核物理所需的高得多,在回旋加速器发明以前,很多新粒子都是在宇宙射线中发现的,如正电子。

1935年,日本物理学家汤川秀树提出了第一个重要的核子间强相互作用的理论,从而解释了原子核内的质子和中子如何束缚在一起的。在汤川的理论中,核子间的作用力是靠一种虚粒子——介子来完成的。介子所传递的强相互作用能够解释原子核为何不在质子间相对较弱的电磁斥力下崩塌,而介子本身具有的两百多倍电子静止质量也能解释为什么强相互作用相比于电磁相互作用具有短很多的作用范围。1937年,安德森等人在宇宙射线中发现了质量约为电子静止质量207倍的新粒子——μ子,人们起初以为μ子正是汤川预言的介子,从而称之为μ介子。然而随着研究发现,μ子和原子核的相互作用非常微弱,事实证明它只是一种轻子。1947年,英国布里斯托尔大学的物理学家塞西尔·鲍威尔等人通过对宇宙射线照相发现了质量约为电子静止质量273倍的π介子,从而证实了汤川的预言。

1914年詹姆斯·查德威克发现β衰变的谱线是连续谱,这表明在β衰变中存在一部分未知的能量损失。为此,沃尔夫冈·泡利于1930年提出中微子假说:在β衰变过程中,伴随每一个电子有一个轻的中性粒子一起被发射出来,泡利当时将这种粒子称作中子。但随后查德威克于1932年发现了“真正”的大质量中子后,这种中性粒子后来被费米改成了现在具有意大利文风格的名字,称作(反)中微子。

1934年,费米在此基础上将产生电子和中微子的过程和产生光子的过程进行了类比,提出中子和质子只是核子的两种状态,β衰变即这两种状态之间的跃迁过程,从中会释放出电子和中微子;而相对于电磁相互作用释放的光子,释放电子和中微子的相互作用被称作弱相互作用。

意大利物理学家维克和汉斯·贝特后来用费米的衰变理论预言了第三种β衰变的形式:电子俘获,这一预言后来也被实验证实。1953年,洛斯阿拉莫斯国家实验室的克莱德·科温和弗雷德里克·莱因斯等人利用核反应堆的β衰变产生的反中微子对质子进行散射,通过测量得到的中子和正电子的散射截面直接证实了反中微子的存在。相关论文《自由中微子的探测:一个证实》于1956年发表在《科学》杂志上,这一结果获得了1995年的诺贝尔物理学奖。

如前所述,夸克模型是由盖尔曼和乔治·茨威格在1964年分别独立提出的,在他们的模型中,强子由三种味的夸克:上夸克、下夸克和奇夸克组成,这三种夸克决定了强子具有的电荷和自旋等属性。

物理学界对这个模型最初的意见是具有争议的,包括争论夸克是否是一种物理实在,还是只是为了解释当时无法解释的一些现象而提出的抽象概念。不到一年之后,美国物理学家谢尔登·格拉肖和詹姆斯·比约肯扩展了夸克模型,他们预言还有第四种味的夸克:粲夸克存在。这个预言能够更好地解释弱相互作用,使夸克数和当时已知的轻子数相等,并暗示了一个能够给出已知介子的质量的质量公式。

1968年,在斯坦福直线加速器中心进行的非弹性电子散射实验表明质子具有更小的点粒子结构,不是一种基本粒子。当时的物理学家并不倾向于将这些更小的粒子称为夸克,而是按费曼的习惯称之为部分子parton。后来这个实验的产物被判断为上夸克和下夸克,但部分子这一名称仍被沿用至今,它被用于强子的组成部分的统称(夸克、反夸克和胶子)。

深度非弹性散射实验还间接证实了奇夸克的存在,奇夸克的证实为1947年在宇宙射线中发现的K介子和π介子提供了解释。1970年,格拉肖等人再次撰文论证了粲夸克的存在性。

1973年,夸克的味增加到六种,这是由日本物理学家小林诚和益川敏英在实验上观察到CP破坏并认为这一对夸克可以对此加以解释而提出的。这两种新夸克被称作顶夸克和底夸克。1974年11月,两组团队几乎在同一时间观测到了粲夸克,他们是伯顿·里克特领导的斯坦福直线加速器中心和丁肇中领导的布鲁克海文国家实验室。实验中观测到的粲夸克是和反粲夸克一起束缚在介子中的,而这两个研究小组分别给了这种介子不同的符号标记:J和ψ,从而这种介子后来被称作J/ψ介子。这个发现终于使夸克模型得到了物理学界的普遍公认。1977年,费米实验室的利昂·莱德曼领导的研究小组发现了底夸克,这为顶夸克的存在提供了强烈暗示。但直到1995年顶夸克才被费米实验室的另一组研究团队发现。

二十世纪五十年代人们在加速器实验中观测到为数众多的“奇异粒子”,它们具有协同产生,非协同衰变的特性。盖尔曼为此引入了一个新的量子数:奇异数,来解释这一特性,即在强相互作用下奇异数守恒,而在弱相互作用下奇异数不守恒。其中在K介子的衰变过程中,人们发现有两种质量、寿命和电荷都相同的粒子:θ介子和τ介子,它们唯一的区别是衰变后产物不同:一个衰变为两个π介子,另一个衰变为三个π介子。其中π介子具有负的宇称,从而衰变为两个π介子意味着这种粒子具有正的宇称,而衰变为三个则意味着有负的宇称。如果宇称守恒定律成立,则表明这两种粒子虽然其他性质都相同却不是同一种粒子,果真如此为何θ介子和τ介子的性质如此相同?这一难题当时被称作θ-τ之谜。

1956年,当时在美国的物理学者李政道和杨振宁发表了著名论文《弱相互作用中的宇称守恒质疑》,在这篇文章中他们认为,θ-τ之谜所带来的宇称不守恒问题不是一个孤立事件,宇称不守恒很可能就是一个普遍性的基础科学原理。

在电磁相互作用及强相互作用中,宇称确实守恒,因此在那时期的科学家猜想在弱相互作用中宇称也守恒,但这一点尚未得到实验验证。李杨二人的理论研究结果显示出,在弱相互作用中,宇称并不守恒。他们提出了一个在实验室中验证宇称守恒性的实验方案。李政道随即请求吴健雄对于这一点进行实验验证。吴健雄选择了具有放射性的钴-60样品进行该实验,成功证实了宇称在弱相互作用中确实不守恒。Θ+和τ+后来被证明是同一种粒子,也就是K介子,K+。

宇称不守恒是粒子物理学领域一项重要发现,其对于标准模型的建立非常重要。为了表彰李杨二人做出的理论贡献,他们于1957年被授以诺贝尔物理学奖。

按美国物理学家史蒂文·温伯格的说法,在五六十年代粒子物理学产生了三个“出色的想法”:盖尔曼的夸克模型、1954年杨振宁和罗伯特·米尔斯将规范对称性推广至非阿贝尔群(杨-米尔斯理论)来解释强相互作用和弱相互作用、自发对称性破缺(希格斯机制)。

二十世纪六十年代,人们对这些发展之间的联系有了更深刻的理解,谢尔登·格拉肖开始了将电磁理论和弱相互作用理论统一起来的尝试。1967年,温伯格和巴基斯坦物理学家阿卜杜勒·萨拉姆试图在杨-米尔斯理论的基础上将规范场论应用到强相互作用,但仍然遇到了杨-米尔斯理论无法解释粒子的静止质量在规范理论中为零及不可重整化等问题。后来温伯格在反思中发现可以将规范场论应用到格拉肖的电弱理论中,因为在那里可以引入自发对称性破缺的希格斯机制,希格斯机制能够为所有的基本粒子赋予非零静止质量。结果证明这一理论非常之成功,它不仅能够给出规范玻色子的质量,还能给出电子及其他轻子的质量。特别地,电弱理论还预言了一种可观测的实标量粒子——希格斯玻色子。

温伯格和萨拉姆都认为这个理论应当是可重整化的,但他们没有证明这一点。1973年欧洲核子研究组织(CERN)发现了中性流,后来斯坦福直线加速中心于1978年在电子-核子散射中观测到了中性流的宇称破缺,至此电弱理论被物理学界完全接受了。

电弱理论的成功重新唤起了人们对规范场论的研究兴趣,1973年,美国物理学家戴维·格娄斯和他的学生弗朗克·韦尔切克,以及美国物理学家休·波利策发现了非阿贝尔规范场中的渐近自由性质。而他们也给出了对于观察不到静止质量为零的胶子的解释:胶子如同夸克一样,由于色荷的存在而受到色禁闭的约束从而无法独立存在。在统合了电弱理论和量子色动力学的基础上,粒子物理学建立了一个能够描述除引力以外的三种基本相互作用及所有基本粒子(夸克、轻子、规范玻色子、希格斯玻色子)的规范理论——标准模型,二十世纪中叶以来高能物理的所有实验成果都符合标准模型的预言。然而,标准模型不但无法将引力,以及近年来提出的暗物质与暗能量包含在内,它所预言的希格斯玻色子的存在还没有确凿的实验证实,它也没有解释中微子振荡中的非零质量问题。2008年起在欧洲核子研究组织开始运行的大型强子对撞机的主要实验目的之一,就是对希格斯玻色子的存在性进行验证;2013年3月14日,欧洲核子研究组织发表新闻稿正式宣布探测到希格斯玻色子。

至此整个“量子”物理学的标准模型建立,并取得一系列验证。如果你坚持看到了这里,一定会别那么的人名,那么多专有名词搞糊涂,所以你就可以想象那些研究者也是这样过来,而且他们的脑中非常的清晰,他们的问题是什么?他要去的方向在哪里??

如果你以为量子物理学就再无发展,那就错了。
很多量子学分支,依然取得很多的研究成果。 凝聚体物理学就是其中之一。

凝聚体物理学成为了目前物理学最为活跃的领域之一。仅在美国,该领域的研究者就占到该国物理学者整体的近三分之一,凝聚体物理学部也是美国物理学会最大的部门。早期的凝聚态物理是基于经典或半经典理论的,例如在金属电子论中服从玻尔兹曼统计的自由电子气体模型,后来泡利在此基础上引入了由费米和狄拉克各自独立建立的费米-狄拉克统计使之成为一种半经典理论,建立了金属电子的费米能级等概念;以及彼得·德拜改进了固体比热容的爱因斯坦模型,建立了更符合实际情形的德拜模型。1912年,劳厄、威廉·亨利·布拉格爵士和其子威廉·劳伦斯·布拉格爵士从晶体的X射线衍射提出了晶格理论,这成为了晶格结构分析的基础,也标志着近代固体物理学的开端。

二十世纪二十年代量子力学的诞生使凝聚态物理学具有了坚实的理论基础,其立竿见影的成果是海森堡在1928年建立了铁磁性的量子理论,不过对固体物理学界更有影响力的是同年他的学生、美籍瑞士裔物理学家费利克斯·布洛赫建立的能带理论。

虽然布洛赫是海森堡的学生,他建立能带理论的基础却是薛定谔方程。他从薛定谔方程的解得到启发,推导出在周期势场中运动电子的波函数是一个调幅平面波,调幅因子(布洛赫波包)具有和晶格势场相同的周期性,这一定理后来被称作布洛赫定理。

布洛赫的能带理论解释了很多以往固体物理学无法解释的现象,如金属电阻率、正霍尔系数等,后来在英国物理学家A.H.威尔逊、法国物理学家莱昂·布里渊等人的完善下,能带理论还进一步解释了金属的导电性、提出了费米面的概念,它对二十世纪三十年代的凝聚态物理学影响非常深远。第二次世界大战后,能带理论在实际应用中发挥了重要作用,贝尔实验室的威廉·肖克利、约翰·巴丁等人于1947年12月23日制造出世界上第一只晶体管。

凝聚态物理学发展的另一个活跃领域是低温方向:1911年,荷兰物理学家卡末林·昂内斯发现水银在4.2K的低温时电阻率消失为零,这被称作超导电性。

对超导电性本质的解释始终是物理学家难以解决的一个问题,即使是在布洛赫建立能带理论之后。1933年,德国物理学家瓦尔特·迈斯纳在实验中发现超导体内部的磁场总保持为零,这被称作迈斯纳效应。人们从中发现,超导体的这种完全抗磁性实际来自固体本身的一种热力学态,这种热力学态正是具有超导电性和完全抗磁性这两种属性。为了进一步解释超导电性,人们曾提出过一系列唯象理论,如二流体模型(戈特、亨德里克·卡西米尔,1934年)、伦敦方程(属于经典电动力学理论,伦敦兄弟,1935年)、金兹堡-朗道方程(金兹堡、朗道,1950年)。直到1956年,美国物理学家利昂·库珀利用量子场论方法建立了库珀对的概念,当电子能量低于费米能时,库珀对由两个动量和自旋都大小相等方向相反的电子结合而形成。

1957年,库珀和巴丁、约翰·施里弗三人在此基础上共同提出了超导的微观理论,又称作BCS理论,至此在微观上解释了超导电性。1962年,剑桥大学的布赖恩·约瑟夫森应用BCS理论计算出基于量子隧道效应的约瑟夫森效应。

万有理论

从伽利略的时代算起,物理学发展的四百多年历史中已经经历了几次大的统一:牛顿统一了“天上的”和“地上的”力学,麦克斯韦统一了电磁理论,格拉肖等人统一了弱相互作用和电磁相互作用。而尝试将弱电相互作用和强相互作用统一起来的理论统称为大统一理论,大统一理论将统一标准模型中的四种规范玻色子和传递强相互作用的八种胶子规范玻色子。当前被建议的大统一理论有很多,一般来说这些理论都做出了如下的关键性预言:磁单极子、宇宙弦、质子衰变等,时至今日还没有上述的任何一种现象得到实验的证实。如要通过实验验证大统一理论,粒子所需的能量要达到~1016GeV[260],这已经远远超过现有的任何粒子加速器所能达到的范围。

当前被提议的主流万有理论是超弦理论及M理论;而对圈量子引力的研究可能也会对建立万有理论产生基础性的影响,但这并不是圈量子引力论的主要目标。

弦理论的雏形起源于1968年,麻省理工学院的意大利物理学家加布里埃尔·威尼采亚诺发现用Β函数描述强相互作用粒子的散射振幅时正满足强相互作用粒子所具有的对偶性。后来人们发现这个函数能够被解释为弦与弦之间的散射振幅,从而这个数学公式就成为了弦理论的起源。

犹太裔美国物理学家约翰·施瓦茨是现代弦论的创始人之一,他自1972年起开始研究弦论,并由于和英国物理学家迈克尔·格林合作研究的I型弦理论中的反常相消而引发了所谓第一次超弦革命。

在1984年至1986年间发生的第一次超弦革命中,弦论正式开始流行,物理学家认识到弦论能够描述所有的基本粒子以及彼此间的相互作用,从而期望弦论能够成为一种终极理论:欧洲核子研究组织的约翰·埃利斯就是由此提出了“万有理论”一词

第二次超弦革命是在1994年至1997年间,其影响更为深远。1995年美国数学物理学家爱德华·威滕猜测在强耦合极限下十维的超弦、以及广义相对论与超对称的统一即所谓超引力,能够构成一个猜想的十一维模型的一部分,这种模型在施瓦茨的建议下被叫做M理论。同年十月,加利福尼亚大学圣塔芭芭拉分校的约瑟夫·泡尔钦斯基发现超弦理论中产生的孤子正是他们于1989年发现的D-膜。

这就是整个量子力学发展史,即使我们就简单的读一遍,就觉得异常厚重。人类的不可想象正是由这些理论证明的,永远不要小看你自己。无论是身处何方,做什么工作,你都要坚信你和其他人一样优秀。

在读了这些物理学的发展史之后,我更加觉得要做一个科普者是多么不易。要做一个创新者更是需要很深厚的理论物理基础,而这些我似乎并不具备。所以我目前理论,也只是停留下猜想阶段,我希望我能用数学来证明它们。我也希望你能用数学证明它们。

摘自独立学者,诗人,作家,国学起名师灵遁者量子力学科普书籍《见微知著》第四章。

相关文章